期刊文献+

基于二进小波变换和软阈值改进的信号消噪 被引量:15

Signal De-Noising by Improving Soft Thresholding on the Dyadic Wavelet Transform
在线阅读 下载PDF
导出
摘要 软阈值消噪是信号消噪中的标准算法.理论上,软阈值方法在最小最大误差方面是近似最优的.研究表明,通过结合系数消噪和软阈值方法,可以达到更低的误差下界.由于离散小波是非平移不变的,因而重构过程中会出现人工噪声.为了避免这个问题,采用了具有平移不变性的二进小波变换.实验结果表明,文中所提算法的消噪结果具有更高的信噪比和更光滑的外观. Soft thresholding method has been a standard procedure in signal de-noising. Theoretically, it is also almost optimal in the sense of minimax mean-squared error. This paper shows that by combining coefficient de-noising and soft thresholding, a lower bound of mean-squared-error can be achieved. Furthermore, the translation-invariant (TI) dyadic wavelet transform is used instead of DWT, which can avoid the artifacts caused by the non-TI reconstruction. Experiments show that the proposed method improves the signal-to-noise ratios of the de-noised signals. Moreover, the de-noised signals have smooth and nice visual appearance.
出处 《自动化学报》 EI CSCD 北大核心 2004年第2期199-206,共8页 Acta Automatica Sinica
基金 香港特别行政区研究资助局(HKUST2033100E)资助
关键词 信号消噪 二进小波变换 软阈值 光滑性理论 信号处理 Signal de-noising, soft thresholding, dyadic wavelet transform
  • 相关文献

参考文献22

  • 1Donoho D L. De-Noising by soft thresholding. IEEE Transactions on Information Theory, 1995, 41(3): 617-627.
  • 2Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding. Signal Processing, 1997, 56(1) : 33-44.
  • 3Figueiredo M, Nowak R. Bayesian wavelet-based signal estimation using non-informative priors. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers. Monterey: 1998. 1368-1373.
  • 4Abramovich F, Sapatinas T, Silverman B. Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society B, 1998, 60(4): 725-749.
  • 5Cohen I, Raz S, Malah D. TransIation-invariant denoising using the minimum description length criterion. Signal Processing, 1999, 75(3) : 201-223.
  • 6Cherkassky V, Shao X. Signal estimation and de-noising using VC-theory. Neural Networks, 2001, 14(1) : 37-52.
  • 7Coifman R, Donoho D. Translation-invariant de-noising. In: Wavelets and Statistics: A Antoniadis, G Oppenheim, Lecture Notes in Statistics. New York: Springer Verlag, 1995. 125-150.
  • 8Bui T D, Chen G. Translation invariant de-noising using multiwavelets. IEEE Transactions on Signal Processing, 1998, 46(12): 3414-3420.
  • 9Mallat S, Zhong. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710-732.
  • 10Laine A, Fan HJ, Schuler S. Digital Mammography. The Netherlands: Elsevier, 1994. 91-100.

同被引文献108

引证文献15

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部