期刊文献+

一种改进的语音数据小波阈值的去噪算法 被引量:2

An Improved Wavelet Threshold Method of Speech De-Noising
在线阅读 下载PDF
导出
摘要 小波阈值去噪是一种简洁有效的信号去噪方法,在信号处理领域得到了广泛应用。结合语音信号特有的频率分布特点,在软硬阈值函数的基础上,提出了一种改进的基于分解尺度的小波阈值去噪函数。仿真实验表明,该函数能够较好的滤除语音数据中的噪声,并且在更大程度上保留原始语音信息。 Wavelet threshold de-noising method has been a simple and effective method of signal de-noising.Considering the special frequency distribution of speech signal,based on the hard and soft threshold functions and some other modified threshold de-noising methods,a improved threshold de-noising function is proposed in this paper.Experiments show that the improved function has a better performance in speech de-noising and leaves more original speech information.
出处 《微型电脑应用》 2010年第11期60-61,64,共3页 Microcomputer Applications
关键词 小波变换 语音去噪 阈值去噪 Wavelet Transform,Speech De-noising,Threshold De-noising
  • 相关文献

参考文献8

  • 1Donoho D L.De-Noising by soft thresholding.IEEE Transactions on Information Theory,1995,41 (3),617-627.
  • 2赵瑞珍,宋国乡.一种基于小波变换的白噪声消噪方法的改进[J].西安电子科技大学学报,2000,27(5):619-622. 被引量:70
  • 3Stephane Mallat(法).信号处理的小波引导[M].北京:机械工业出版社2003.
  • 4李士心,刘鲁源.基于小波阈值去噪方法的研究[J].仪器仪表学报,2002,23(z2):478-479. 被引量:28
  • 5Li Su,Guoliang Zhao,Translation-lnvariant Wavelet De-Noising Method with Improved Thresholdlng.IEEE International Symposium on Volume I,12-14 Oct.2005 Page(s):619-622.
  • 6祝海龙,郭天佑,屈梁生.基于二进小波变换和软阈值改进的信号消噪[J].自动化学报,2004,30(2):199-206. 被引量:15
  • 7Song G and Zhao R.Three novel models of threshold estimator for Wavelet Analysis and Its Applications.Berlin:Springer-Verlag,2001,pp.145-150.
  • 8Qin s,Yang c,Tang B,and Tan S."The denoise based on translation invanance wavelet transform and its applications," A Conference on Structural Dynamics.Los Angeles,vol.1,pp.783-787,Feb.2002.

二级参考文献26

  • 1[1]Donoho,D.L,Johnstone,I.M.Adapting to unknown smoothness via wavelet shrinkage.J.Am.Statist Ass.,1995,90(432):1200~1224.
  • 2[2]Bruce,A.G.&Gao,H.-Y.Waveshrink with firm shrinkage.Statist.Sinica,1997,4:855~874.
  • 3Jansen M, Malfait M, Bultheel A. Generalized cross validation for wavelet thresholding. Signal Processing, 1997, 56(1) : 33-44.
  • 4Figueiredo M, Nowak R. Bayesian wavelet-based signal estimation using non-informative priors. In: Proceedings of the Asilomar Conference on Signals, Systems, and Computers. Monterey: 1998. 1368-1373.
  • 5Abramovich F, Sapatinas T, Silverman B. Wavelet thresholding via a Bayesian approach. Journal of the Royal Statistical Society B, 1998, 60(4): 725-749.
  • 6Cohen I, Raz S, Malah D. TransIation-invariant denoising using the minimum description length criterion. Signal Processing, 1999, 75(3) : 201-223.
  • 7Cherkassky V, Shao X. Signal estimation and de-noising using VC-theory. Neural Networks, 2001, 14(1) : 37-52.
  • 8Coifman R, Donoho D. Translation-invariant de-noising. In: Wavelets and Statistics: A Antoniadis, G Oppenheim, Lecture Notes in Statistics. New York: Springer Verlag, 1995. 125-150.
  • 9Bui T D, Chen G. Translation invariant de-noising using multiwavelets. IEEE Transactions on Signal Processing, 1998, 46(12): 3414-3420.
  • 10Mallat S, Zhong. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(7): 710-732.

共引文献109

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部