期刊文献+

基于高密度离散小波变换的改进图像降噪方法 被引量:3

Improved Image Denoising Method Based on High Density Discrete Wavelet Transform
在线阅读 下载PDF
导出
摘要 为进一步提高图像质量,提出一种基于高密度离散小波变换的改进图像降噪方法。给出二维高密度离散小波变换的分解与重构快速算法,通过该算法对图像进行多尺度分解,利用相邻尺度小波系数相关性对各层小波系数进行双变量收缩阈值处理,重构降噪后的图像。实验结果表明,与其他常用小波降噪方法相比,该方法能进一步提高图像降噪效果,且在降噪过程中较好地保留图像细节。 To improve the quality of the image,this paper presents an improved image denoising method based on high density discrete wavelet transform.The two-dimensional fast decomposition and reconstruction algorithm is given,and it is used to decompose the image in multi-scale.The wavelet coefficients at each level are processed with bivariate shrinkage threshold according to the correlation of wavelet coefficients of adjacent scales.The denosed image is reconstructed.Experiments show that compared with other wavelet denoising method,the method proposed in the paper further enhances the image denoising performance,and still keeps the details of the image.
出处 《计算机工程》 CAS CSCD 2012年第1期211-214,共4页 Computer Engineering
基金 国家"111"计划基金资助项目(B08036)
关键词 高密度 小波变换 双变量收缩阈值 图像降噪 high density wavelet transform bivariate shrinkage threshold image denoising
  • 相关文献

参考文献9

  • 1Donoho D L, Johnstone I M. Adapting to Unknown Smoothness via Wavelet Shrinkage[J]. Journal of the American Statistical Association, 1995, 90(432): 1200-1224.
  • 2Selesnick I W. The Double Density DWT[M]. Boston, USA: Kluwer Academic Publishers, 2001.
  • 3Selesnick I W. A Higher Density Discrete Wavelet Transform[J]. IEEE Trans. on Signal Processing, 2006, 54(8): 3039-3048.
  • 4秦毅,汤宝平,王家序.最小不对称高密度小波基的构造及应用[J].振动与冲击,2010,29(10):195-200. 被引量:1
  • 5Sendur L, Selesnick I W. Bivariate Shrinkage Functions for Wavelet-based Denoising Exploiting Interscale Dependency[J]. IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756.
  • 6Sendur L, Selesnick I W. Bivariate Shrinkage with Local Variance Estimation[J]. IEEE Signal Process Letters, 2002, 9(12): 438-441.
  • 7李鹏,喻罡,冀晓燕,卞正中.基于双密度双树小波变换的超声图像降噪[J].系统仿真学报,2007,19(24):5797-5801. 被引量:4
  • 8刘红毅,韦志辉.基于小波域最大子节点相关性的图像去噪[J].计算机工程,2009,35(13):214-215. 被引量:4
  • 9Yah F, Cheng L, Wang H. Higher Density Dual-tree Discrete Wavelet Transform[J]. lET Signal Process, 2007, 1(3): 164-169.

二级参考文献31

  • 1唐炜,史忠科.时频域滤波及在飞机颤振试飞试验中的应用[J].振动与冲击,2006,25(4):46-49. 被引量:5
  • 2Mallat S,Zhong Sifen.Characterization of Signals from Multiscale Edge[J].IEEE Transactions on Pattern Analysis and Machine Intelligent,1992,4(7):710-732.
  • 3Xu Yansun,Weaver J B,Healyd M.Wavelet Transform Domain Filters:A Spatially Selective Noise Filtration Technique[J].IEEE Transactions on Image Processing,1994,3(2):747-758.
  • 4Crouse M S,Nowak R D,Baraniuk R G.Wavelet-based Signal Processing Using Hidden Markov Models[J].IEEE Transactions on Signal Processing,1998,46(4):886-902.
  • 5Shin G S,Kang M G.Wavelet-based Denoising Considering Interscale and Intrascale Dependences[J].Optical Engineering,2005,44(6):1-9.
  • 6Jaffard S.Beyond Besov Spaces Part 2:Oscillation Spaces[J].Constructive Approximation,2005,21(1):29-61.
  • 7Donoho D L. De-noising by soft-thrsholding[J]. IEEE Trans. Information Theory, 1995, 41 (3) : 613 - 627.
  • 8Shensa M J. The discrete wavelet transform: wedding the a trous and Mallat algorithm[J]. IEEE Trans. Signal Processing, 1992, 40(10) : 2464 -2482.
  • 9Daubechies I, Han B, Ron A, et al. Framelets: MRA-based constructions of wavelet frames[J]. Appl. Comput. Harmon. Anal. , 2003, 14(1) : 1 -46.
  • 10Chui C K, He W, Stocklerckler J. Compactly supported tight and sibling frames with maximum vanishing moments [ J ]. Appl. Comput. Harmon. Anal, 2002, 13(3) :224-262.

共引文献6

同被引文献38

  • 1周伟华,王鑫,罗斌.基于双树复小波变换的相位保持SAR图像降噪[J].中国图象图形学报,2007,12(5):805-810. 被引量:6
  • 2梁鹏.多小波图像降噪技术研究[M].北京,北京交通大学,2007.
  • 3K. Koshino, H. Zuo, N. Saito, S. Suzuki. Improved spike noise removal in the scanning laser microscopic im- age of diamond abrasive grain using wavelet transform. Opt. Commun,2004, (239) :67 -78.
  • 4Noriyuki Saito, Kohsuke Kudo, Tsukasa Sasaki. Reali- zation of reliable cerebral -blood -flow mapsfrom low - dose CT perfusion images by statistical noise reduction u- sing nonlinear diffusion filtering, Radiol Phys Technol , 2008, 1:62 - 74.
  • 5Thijssen J M.Ultrasonic Speckle Formation,Analysis and Processing Applied to Tissue Characterization[J].Pattern Recognition Letters,2003,24(2):659-675.
  • 6Gonzalez R C,Woods R E.数字图象处理[M].阮秋琦,阮宇智,译.3版.北京:电子工业出版社,2011.
  • 7Lopes A,Nezry E,Touzi R,et al.Maximum a Posteriori Speckle Filtering and First Order Texture Models in SAR Images[C]//Proceedings of International Geoscience and Remote Sensing Symposium.Washington D.C.,USA:IEEE Press,1990:2409- 2412.
  • 8Frost V S,Stiles J A,Shanmugan K S,et al.A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,3(2):157-166.
  • 9Kuan D T,Sawchuk A A,Strand T C,et al.Adaptive Noise Smoothing Filter for Images with Signal-dependent Noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,3(2):165-177.
  • 10Donohod D L,Johnstoneim I M.Ideal Spatial Adaptation by Wavelet Shrinkage[J].Biometrika,1994,81(3):425-455.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部