期刊文献+

基于深度神经网络的多模态计算机图像识别 被引量:1

Multimodal Computer Image Recognition Based on Deep Neural Network
在线阅读 下载PDF
导出
摘要 为消除锐化与噪声,提高多种不同类型多模态图像的识别精度,基于深度神经网络构建多模态图像识别模型。所提出的图像识别模型通过缩减原则降低相邻顶点间的相似性,采用相似度计算规则估算相邻两个顶点的相似性,有效提升计算机图像识别效率。为节约图像识别运算的空间,在Spark中引入了GraphX的GXDSGC。将提出的方法应用于实际的多模态图像识别中,结果表明所提出的识别算法无须占用大量的硬盘I/O资源,所耗费时间明显缩短,且GXDSGC算法比Hadoop中基于MapReduce框架的算法快30倍以上,显著提高了大数据分析中计算机图像识别的效率。 To eliminate sharpening and noise,and improve the recognition accuracy of various types of multimodal images,a multimodal image recognition model is constructed based on deep neural networks.The proposed image recognition model reduces the similarity between adjacent vertices through the reduction principle,and uses similarity calculation rules to estimate the similarity between adjacent two vertices,effectively improving the efficiency of computer image recognition.To save space for image recognition operations,GraphX's GXDSGC was introduced in Spark.The proposed method is applied to the actual multimodal image recognition,and the results show that the proposed recognition algorithm does not need to occupy a lot of hard disk I/O resources,and the time consumed is significantly shortened,and the GXDSGC algorithm is more than 30 times faster than the algorithm based on the MapReduce framework in Hadoop,which significantly improves the efficiency of computer image recognition in Big data analysis.
作者 越缙 周晓成 YUE Jin;ZHOU Xiaocheng(School of Computer Engineering,Anhui Wenda University of Information Engineering,Hefei 231201,China)
出处 《安阳师范学院学报》 2023年第5期31-35,共5页 Journal of Anyang Normal University
基金 安徽省教育厅重点科研项目(项目编号:2022AH052847)。
关键词 深度神经网络 多模态图像 图像识别 deep neural network multimodal images image recognition
  • 相关文献

参考文献9

二级参考文献86

  • 1Glorot X,Bordes A,Bengio Y.Domain Adaptation for Large-scale Sentiment Classification:A Deep Learning Approach[C]//Proceedings of the 28th International Conference on Machine Learning.Washington D.C.,USA:IMLS Press,2011:513-520.
  • 2Ngiam J,Khosla A,Kim M,et al.Multimodal Deep Learning[C]//Proceedings of the 28th International Conference on Machine Learning.Washington D.C.,USA:IMLS Press,2011:689-696.
  • 3Baccouche M,Mamalet F,Wolf C,et al.Sequential Deep Learning for Human Action Recognition[C]//Proceedings of the 2nd International Workshop on Human Behavior Understanding.Berlin,Germany:Springer,2011:29-39.
  • 4Lai K,Bo Liefeng,Ren Xiaofeng,et al.A Large-scale Hierarchical Multi-view RGB-d Object Dataset[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2011:1817-1824.
  • 5Blum M,Springenberg J T,Wulfing J,et al.A Learned Feature Descriptor for Object Recognition in RGB-d Data[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2012:1298-1303.
  • 6Bo Liefeng,Ren Xiaofeng,Fox D.Unsupervised Feature Learning for RGB-D Based Object Recognition[C]//Proceedings of the 13th International Symposium on Experimental Robotics.Berlin,Germany:Springer,2013:387-402.
  • 7Socher R,Huval B,Bath B P,et al.Convolutional-recursive Deep Learning for 3D Object Classification[M].Nevada,USA:NIPS Foundation,2012.
  • 8Browatzki B,Fischer J,Graf B,et al.Going into Depth:Evaluating 2D and 3D Cues for Object Classification on a New,Large-scale Object Dataset[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2011:1189-1195.
  • 9Deng Jun,Zhang Zixing,Marchi E,et al.Sparse Autoencoder-based Feature Transfer Learning for Speech Emotion Recognition[C]//Proceedings of Humaine Association Conference on Affective Computing and Intelligent Interaction.New York,USA:ACM Press,2013:511-516.
  • 10Bo Liefeng,Ren Xiaofeng,Fox D.Hierarchical Matching Pursuit for Image Classification:Architecture and Fast Algorithms[M].Granada,Spain:NIPS Foundation,2011.

共引文献89

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部