期刊文献+

基于深度特征融合的中低分辨率车型识别 被引量:6

Mid-low Resolution Vehicle Type Recognition Based on Deep Feature Fusion
在线阅读 下载PDF
导出
摘要 针对中低分辨率车型识别问题,建立一种改进的卷积神经网络(CNN)特征融合模型。采取特征融合策略对CNN中的不同低层特征进行融合重复利用。为防止出现过拟合现象,结合网络模型稀疏化的结构,使用数据增强方法优化训练数据。分析和实验结果表明,该模型不仅能产生更具区分性的特征,而且能避免由环境等因素引起的干扰,与传统CNN模型相比,具有更高的识别准确率。 An improved Convolution Neural Network(CNN)feature fusion model is proposed to solve the problem of mid-low resolution vehicle type recognition.The feature fusion strategy is adopted to fuse and reuse different low-level features in CNN.Among them,in order to prevent over-fitting,combined with the sparse structure of the network model,the data enhancement method is used to optimize the training data.Analysis and experimental results show that the model can not only produce more distinguishing features,but also avoid the interference caused by environmental factors to a certain extent.Compared with the traditional CNN model,it has higher recognition accuracy.
作者 薛丽霞 钟欣 汪荣贵 杨娟 胡敏 XUE Lixia;ZHONG Xin;WANG Ronggui;YANG Juan;HU Min(School of Computer and Information,Hefei University of Technology,Hefei 230009,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第1期233-238,245,共7页 Computer Engineering
基金 国家自然科学基金(61672202)
关键词 卷积神经网络 特征融合 稀疏化 中低分辨率 车型识别 Convolution Neural Network(CNN) feature fusion sparseness mid-low resolution vehicle type recognition
  • 相关文献

参考文献4

二级参考文献45

  • 1李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 2Glorot X,Bordes A,Bengio Y.Domain Adaptation for Large-scale Sentiment Classification:A Deep Learning Approach[C]//Proceedings of the 28th International Conference on Machine Learning.Washington D.C.,USA:IMLS Press,2011:513-520.
  • 3Ngiam J,Khosla A,Kim M,et al.Multimodal Deep Learning[C]//Proceedings of the 28th International Conference on Machine Learning.Washington D.C.,USA:IMLS Press,2011:689-696.
  • 4Baccouche M,Mamalet F,Wolf C,et al.Sequential Deep Learning for Human Action Recognition[C]//Proceedings of the 2nd International Workshop on Human Behavior Understanding.Berlin,Germany:Springer,2011:29-39.
  • 5Lai K,Bo Liefeng,Ren Xiaofeng,et al.A Large-scale Hierarchical Multi-view RGB-d Object Dataset[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2011:1817-1824.
  • 6Blum M,Springenberg J T,Wulfing J,et al.A Learned Feature Descriptor for Object Recognition in RGB-d Data[C]//Proceedings of IEEE International Conference on Robotics and Automation.Washington D.C.,USA:IEEE Press,2012:1298-1303.
  • 7Bo Liefeng,Ren Xiaofeng,Fox D.Unsupervised Feature Learning for RGB-D Based Object Recognition[C]//Proceedings of the 13th International Symposium on Experimental Robotics.Berlin,Germany:Springer,2013:387-402.
  • 8Socher R,Huval B,Bath B P,et al.Convolutional-recursive Deep Learning for 3D Object Classification[M].Nevada,USA:NIPS Foundation,2012.
  • 9Browatzki B,Fischer J,Graf B,et al.Going into Depth:Evaluating 2D and 3D Cues for Object Classification on a New,Large-scale Object Dataset[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2011:1189-1195.
  • 10Deng Jun,Zhang Zixing,Marchi E,et al.Sparse Autoencoder-based Feature Transfer Learning for Speech Emotion Recognition[C]//Proceedings of Humaine Association Conference on Affective Computing and Intelligent Interaction.New York,USA:ACM Press,2013:511-516.

共引文献245

同被引文献27

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部