期刊文献+

基于跨尺度低秩约束的图像盲解卷积算法 被引量:2

Blind Image Deconvolution via Cross-scale Low Rank Prior
在线阅读 下载PDF
导出
摘要 在模糊核未知的情况下对模糊图像进行复原称为盲解卷积问题,这是一个欠定逆问题,现有的大部分盲解卷积算法利用图像的各种先验知识约束问题的解空间.由于清晰图像的跨尺度自相似性强于模糊图像的跨尺度自相似性,且降采样模糊图像与清晰图像具有更强的相似性,本文提出了一种基于跨尺度低秩约束的单幅图像盲解卷积算法,利用图像跨尺度自相似性,在降采样图像中搜索相似图像块构成相似图像块组,从整体上对相似图像块组进行低秩约束,作为正则项加入到图像盲解卷积的目标函数中,迫使重建图像的边缘接近清晰图像的边缘.本文算法没有对噪声进行特殊处理,由于低秩约束更好地表示了数据的全局结构特性,因此避免了盲解卷积过程受噪声的干扰.在模糊图像和模糊有噪图像上的实验验证了本文的算法能够解决大尺寸模糊核的盲复原并对噪声具有良好的鲁棒性. Blind image deconvolution aims to recover the sharp image from a blurred one when the blur kernel is unknown. To solve this underdetermined inverse problem, most existing methods exploit various image priors to constrain the solution. Our work is inspired by the observation that the cross-scale self-similarity of the sharp image will diminish after blurring, and the down-sampled blurry image has stronger similarity with the sharp image than the blurry image. In this paper, we propose a blind deconvolution method based on cross-scale low rank prior,in which the similar image patch group is formed from sharper patches sampled from the down-sampled image, and the low rank matrix approximation is used to explore the low rank structure of this group. By introducing the crossscale low rank prior as the regularization constraint, the intermediate latent image is enforced to contain the sharp edges and fine details. The low rank matrix approximation elegantly indicates the global structure of data, allowing for the noise-avoiding kernel estimation without acquiring any additional handling of noise. Experimental results on blurry images and blurred-noisy images demonstrate that our method can estimate accurate large blur kernels,meanwhile, it has good robustness to noise.
作者 彭天奇 禹晶 肖创柏 PENG Tian-Qi;YU Jing;XIAO Chuang-Bai(Faculty of Information Technology,Beijing University of Technology,Beijing 100124)
出处 《自动化学报》 EI CAS CSCD 北大核心 2022年第10期2508-2525,共18页 Acta Automatica Sinica
基金 北京市教育委员会科技发展计划(KM201910005029) 北京市自然科学基金(4172002)资助。
关键词 自相似性 跨尺度 低秩 盲解卷积 去模糊 Self-similarity cross-scale low rank blind deconvolution deblurring
  • 相关文献

参考文献3

二级参考文献20

  • 1Aly H A, Dubois E. Image up-sampling using total-variation regularization with a new observation model. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659.
  • 2Babacan S D, Molina R, Katsaggelos A K. Total variation super resolution using a variational approach. In: Proceedings of the 15th IEEE International Conference on Image Processing. San Diego, USA: IEEE, 2008. 641-644.
  • 3Sen P, Darabi S. Compressive image super-resolution. In: Proceedings of the 43rd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2009. 1235-1242.
  • 4Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 5Yang S Y, Sun F H, Wang M, Liu Z Z, Jiao L C. Novel super resolution restoration of remote sensing images based on compressive sensing and example patches-aided dictionary learning. In: Proceedings of the 2011 International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping. Xiamen, China: IEEE, 2011. 1-6.
  • 6Protter M, Elad M, Takeda H, Milanfar P. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1): 36-51.
  • 7Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Non-local sparse models for image restoration. In: Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2272-2279.
  • 8Suetake N, Sakano M, Uchino E. Image super-resolution based on local self-similarity. Optical Review, 2008, 15(1): 26-30.
  • 9Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 349-356.
  • 10Dong W S, Zhang L, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857.

共引文献146

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部