期刊文献+

基于多尺度非局部约束的单幅图像超分辨率算法 被引量:7

Single-image Super-resolution Algorithm Based on Multi-scale Nonlocal Regularization
在线阅读 下载PDF
导出
摘要 多尺度结构自相似性是指图像中的大量物体具有相同尺度以及不同尺度相似结构的性质.本文提出了一种基于多尺度非局部约束的单幅图像超分辨率算法,结合多尺度非局部方法和多尺度字典学习方法将蕴含在图像多尺度自相似结构中的附加信息加入到重建图像中.多尺度非局部方法在图像金字塔的不同层中搜索相似图像块,并利用多尺度相似图像块间的关系建立非局部约束项,通过正则化约束获取多尺度自相似结构中的附加信息;多尺度字典学习方法将图像金字塔作为字典学习的样本,通过字典学习使样本中的多尺度相似图像块在字典下具有稀疏表示形式,从而获取多尺度自相似结构中的附加信息.实验表明,与ScSR、SISR、NLIBP、CSSS、ASDSAR和mSSIM等算法相比,本文的算法取得了更好的超分辨率重建效果. Multi-scale structural self-similarity refers which are either in the same scale or across different to that there are many similar structures in the same image, scales. In this paper, a single-image super-resolution method based on multi-scale nonlocal regularization is proposed. In this method, the multi-scale nonlocal and the multi-scale dictionary learning methods are combined to add the extra information exploited from multi-scale similar structures into the reconstructed image. The multi-scale nonlocal method exploits extra information from multi-scale similar structures by searching for similar patches in the image pyramid and constructing the multi-scale nonlocal regularization according to the correspondence between multi-scale similar patches. The multi-scale dictionary learning method exploits extra information from multi-scale similar structures by using the image pyramid as training samples in dictionary learning, so that the patches in the pyralnid have sparse representations over the learned dictionary. Experimental results demonstrate that the method achieves better image quality compared with ScSR, SISR, NLIBP, CSSS, ASDSAR and mSSIM methods.
出处 《自动化学报》 EI CSCD 北大核心 2014年第10期2233-2244,共12页 Acta Automatica Sinica
基金 国家自然科学基金(61171117) 国家科技支撑计划项目(2012BAH31B01) 中国博士后科学基金(2013M540946) 北京市教育委员会科技计划重点项目(KZ201310028035)资助~~
关键词 超分辨率 多尺度结构自相似性 稀疏表示 非局部方法 Super-resolution (SR), multi-scale structural self-similarity, sparse representation, nonlocal method
  • 相关文献

参考文献18

  • 1孙琰玥,何小海,宋海英,陈为龙.一种用于视频超分辨率重建的块匹配图像配准方法[J].自动化学报,2011,37(1):37-43. 被引量:27
  • 2安耀祖,陆耀,赵红.一种自适应正则化的图像超分辨率算法[J].自动化学报,2012,38(4):601-608. 被引量:28
  • 3Sen P, Darabi S. Compressive image super-resolution. In: Proceedings of 43rd Asilomar Conference on Signals, Systems and Computers. Pacific Grove, USA: IEEE, 2009. 1235-1242.
  • 4Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.
  • 5Protter M, Elad M, Takeda H, Milanfar P. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1): 36-51.
  • 6Dong W S, Zhang L, Shi G M, Wu X L. Nonlocal back-projection for adaptive image enlargement. In: Proceedings of the 2009 IEEE International Conference on Image Processing. Cairo, Egypt: IEEE, 2009. 349-352.
  • 7Glasner D, Bagon S, Irani M. Super-resolution from a single image. In: Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 349-356.
  • 8Dong W S, Zhang L, Shi G M, Wu X L. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing, 2011, 20(7): 1838-1857.
  • 9Pan Z X, Yu J, Huang H J, Hu S X, Zhang A W, Ma H B, Sun W D. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4864-4876.
  • 10潘宗序,禹晶,胡少兴,孙卫东.基于多尺度结构自相似性的单幅图像超分辨率算法[J].自动化学报,2014,40(4):594-603. 被引量:45

二级参考文献31

  • 1肖创柏,段娟,禹晶.序列图像的POCS超分辨率重建方法[J].北京工业大学学报,2009,35(1):108-113. 被引量:13
  • 2王晓燕,郑建宏.用于快速块匹配运动估计的自适应十字模式搜索[J].电子与信息学报,2005,27(1):104-107. 被引量:12
  • 3禹晶,苏开娜,肖创柏.一种改善超分辨率图像重建中边缘质量的方法[J].自动化学报,2007,33(6):577-582. 被引量:22
  • 4闫华,刘琚.考虑亚像素配准误差的超分辨率图像复原[J].电子学报,2007,35(7):1409-1413. 被引量:4
  • 5Li R, Zeng B, Liou M L. A new three-step search algorithm for block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1994, 4(4): 438-442.
  • 6Lu J H, Liou M L. A simple and efficient search algorithm for block-matching motion estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1997, 7(2): 429-433.
  • 7Zhu C, Lin X, Chau L P. Hexagon-based search pattern for fast block motion estimation. IEEE Transactions on Circuits and Systems for Video Technology 2002, 12(5): 349-355.
  • 8Jia H J, Zhang L. Directional diamond search pattern for fast block motion estimation. Electronics Letters, 2003, 39(22): 1581-1583.
  • 9Ali A, Ali S F, Khan N, Masud S. Performance improvement in motion estimation of dirac wavelet based video codec. In: Proceedings of the 9th International Symposium on Communications and Information Technology. Lahore, Pakistan: IEEE, 2009. 764-769.
  • 10Tong C S, Leung K T. Super-resolution reconstruction based on linear interpolation of wavelet coefficients. Multi- dimensional Systems and Signal Processing, 2007, 18(2-3): 153-171.

共引文献95

同被引文献37

  • 1Nasrollahi K, Moeslund T B. Super-resolution:a comprehensive survey. Machine Vision and Applications, 2014, 25(6):1423-1468.
  • 2Balure C S, Kini M R. A survey-super resolution techniques for multiple, single, and stereo images. In:Proceedings the 5th International Symposium on Electronic System Design (ISED). Surathkal:IEEE, 2014.215-216.
  • 3Getreuer P. Contour stencils:total variation along curves for adaptive image interpolation. SIAM Journal on Imaging Sciences, 2011, 4(3):954-979.
  • 4Freedman G, Fattal R. Image and video upscaling from local self-examples. ACM Transactions on Graphics, 2011, 30(2):Article No.12.
  • 5Kawano H, Suetake N, Cha B, Aso T. Sharpness preserving image enlargement by using self-decomposed codebook and Mahalanobis distance. Image and Vision Computing, 2009, 27(6):684-693.
  • 6Zhang Y Q, Liu J Y, Yang W H, Guo Z M. Image super-resolution based on structure-modulated sparse representation. IEEE Transactions on Image Processing, 2015, 24(9):2797-2810.
  • 7Zhang Y Q, Xiao J S, Li S H, Shi C Y, Xie G X. Learning block-structured incoherent dictionaries for sparse representation. Science China Information Sciences, 2015, 58(10):1-15.
  • 8Yang C Y, Huang J B, Yang M H. Exploiting self-similarities for single frame super-resolution. In:Proceedings of the 10th Asian Conference on Computer Vision (ACCV). Queenstown, New Zealand:Springer, 2011.497-510.
  • 9Glasner D, Bagon S, Irani M. Super-resolution from a single image. In:Proceedings of the 12th IEEE International Conference on Computer Vision (ICCV). Kyoto, Japan:IEEE, 2009.349-356.
  • 10Schulter S, Leistner C, Bischof H. Fast and accurate image upscaling with super-resolution forests. In:Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA:IEEE, 2015.3791-3799.

引证文献7

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部