期刊文献+

基于亚像素位移的超分辨率图像重建算法 被引量:10

Super-resolution Image Reconstruction Algorithm Based on Sub-pixel Shift
在线阅读 下载PDF
导出
摘要 针对多帧图像超分辨率重建问题,利用一阶泰勒展式,在亚像素级上对图像退化过程进行建模,并建立极小化能量函数,选择Graph-cut算法进行能量极小化求解.为了验证本文算法的有效性,采用模拟图像退化过程和直接用相机拍摄两种方式获得低分辨率图像序列.从4×4倍重建结果的比较来看,本文算法不仅对模拟退化过程产生的低分辨率图像序列有效,而且在提高真实低分辨率图像的分辨能力方面也有很好的效果.此外,实验结果表明本文算法对噪声有较好的抗干扰能力. This paper studies the problem of multi-frame image super-resolution reconstruction. The process of image degradation is modeled by using the first-order Taylor expansion based on sub-pixel. Then the energy minimization function is established and the graph-cut algorithm is chosen to solve the energy minimization. In order to confirm this algorithm, we obtain the low resolution images by two ways: simulating image degradation and taking photos. By comparing the 4 x4 times reconstruction results, it is shown that this algorithm is valid not only for simulation of low resolution images but also for real images. Besides, experimental results show that this algorithm possesses good anti-interference ability of noise.
出处 《自动化学报》 EI CSCD 北大核心 2014年第12期2851-2861,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61373077) 国防基础科研计划(B0110155) 国防科技重点实验室基金(9140C30211ZS8) 高等学校博士学科点专项科研基金(20110121110020) 福建省自然科学基金(2011J01365) 福建省重点项目(2014H0034) 航空科学基金(20125168001) 黄慧贞集美大学学科建设基金(ZC2014010)资助~~
关键词 超分辨率 亚像素 图割 α-expansion 图像退化模型 Super-resolution, sub-pixel, graph-cut, a-expansion, image degradation model
  • 相关文献

参考文献29

二级参考文献219

共引文献151

同被引文献65

  • 1程璐.超分辨率复原技术中基于分级块匹配的运动估计[J].哈尔滨师范大学自然科学学报,2006,22(6):41-43. 被引量:1
  • 2Yang Jianchao, Wright J, Huang T, et al. Image su- per-resolution via sparse representation I-J]. IEEE Transactions on Image processing, 2010, 19 ( 11 ) .. 2861-2873.
  • 3Ren Jie, Liu Jiaying, Guo Zongming. Context-aware sparse decomposition for image denoising and super-res- olution [J]. IEEE Transactions on Image Processing, 2013, 22(4). 1456-1469.
  • 4Li Xuelong, Hu Yanting, Gao Xinbo. A multi-frame image super-resolution method [J]. Signal Processing, 2010, 90(2): 405-414.
  • 5Ji Hui, Fermtiller C. Robust wavelet-based super-reso- lution reconstruction: theory and algorithm [J]. IEEE Transaction on Pattern Analysis and Machine Intelli- gence, 2009, 31(4): 649-660.
  • 6Mudenagudi U, Banerjee S, Kalra P K. Space-time su- per-resolution using graph-cut optimization [J]. IEEE Transaction on Pattern Analysis and Machine Intelli- gence, 2011, 33(5): 995-1008.
  • 7Esmaeil F, Dinesh R, Marc P C. A Unified blind meth- od for multi-Image super-resolution and single/multi- image blur deconvolution [J]. IEEE Transactions on Image Processing, 2013, 22(6). 2101-2114.
  • 8Kolmogorov V, Zabih R. What energy functions can be minimized via graph cuts [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2004, 26 (2) : 147-159.
  • 9Boykov Y, Kotmogorov V. An experimental compari- son of rain-cut/max-flow algorithms for energy minimi- zation in vision [J]. IEEE Transaction on Pattern Anal- ysis and Machine Intelligence, 2004, 26 ( 9 ): 1124-1137.
  • 10吴琼,田越,周春平,宫辉力,李小娟,赵文吉.遥感图像超分辨率研究的现状和发展[J].测绘科学,2008,33(6):66-69. 被引量:13

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部