期刊文献+

基于L-M算法的BP神经网络预测艉轴管圆柱度误差

Prediction of the Cylindricity Error of Stern Tube by BP Neural Network Based on L-M Algorithm
原文传递
导出
摘要 为优化艉轴管镗孔的镗削工艺,研究镗削用量和加工过程中各影响因素对艉轴管尺寸误差的影响,采用基于L-M算法的BP神经网络对影响艉轴管镗孔的各因素进行分析,得到艉轴管镗孔误差与各因素之间的非线性关系。建立多输入单输出的BP神经网络模型,并应用镗孔的实际数据对其进行训练。采用正交试验法得到相应的加工数据,对预测模型的有效性进行验证,结果表明,采用基于L-M算法的BP神经网络建立的艉轴管镗孔误差预测模型,能对艉轴管的镗孔误差进行较为准确的预测。 In order to optimize the boring process of ship’s stern tube boring, and to study the influence of boring parameters, various factors of machining process and the size error of stern tube, the BP neural network based on L-M algorithm is used to analyze the various factors affecting the boring of stern tube, and the nonlinear relationship between the boring error of stern tube and these influencing factors is obtained, and multi input single output is established, the results show that the neural network can be used to predict the error of the stern tube boring.
作者 董子彰 邓啸尘 杨振 刘建峰 周宏 DONG Zizhang;DENG Xiaochen;YANG Zhen;LIU Jianfeng;ZHOU Hong(School of Naval Architecture and Ocean Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003,Jiangsu,China;Shanghai Waigaoqiao Shipbuilding Co.,Ltd.,Shanghai 200137,China)
出处 《船舶工程》 CSCD 北大核心 2021年第9期123-126,131,共5页 Ship Engineering
基金 船舶分段智能制造装备解决方案及关键共性技术研究(工信部装函2018[473]号)。
关键词 BP神经网络 艉轴管 圆柱度 误差预测 BP neural network stern tube cylindricity error prediction
  • 相关文献

参考文献3

二级参考文献14

  • 1何涛,龚立雄,钟飞.基于RBF神经网络的机械加工误差质量模型[J].湖北工业大学学报,2007,22(1):57-59. 被引量:2
  • 2Zhang H C, Huang S H. Artificial neural networks in manufacturing-a state of the art survey. International Journal of Production Research, 1995, 33 (3): 705-728
  • 3Suneel T S, Pande S S, Date P P. A technical note on integrated product quality model using artificial neural networks. Journal of Materials Processing Technology, 2002, 121: 77- 86
  • 4Liu Z Q, Venuvinod P K. Error compensation in CNC turning solely from dimensional measurements previously machined parts. CIRP Annals- Manufacturing Technology, 1999, 48: 429-432
  • 5Sartori S, Zhang G X. Geometric Error Measurement and Compensation of Machines. Annals CIRP, 1995, 44(2): 1- 11
  • 6Foresee F D, Hagan M T. Gauss-Newton approximation to Bayesian learning. Proceedings of the international Joint Conference on Neural Networks, 1997
  • 7ABU-AYYAD M, DUBAY R, HERNANDEZ J M. Applica- tion of Infinite Model Predictive Control Methodology to Other Advanced Controllers[ J] i ISA Transactions ,2009,48 (1) :54 -61.
  • 8DASTAN Aysegul, HORNE Roland N. Robust Well-test In- terpretation by Using Nonlinear Regression with Parameter and Data Transformations [ J ]. SPE Journal, 2011,16 ( 3 ) : 698 -712.
  • 9CHUNG Fu-Lai, FU Tak-Chung, NG Vincent, et al. An Ev- olutionary Approach to Pattern-based Time Series Segmen- tation [ J ]. IEEE Transactions on Evolutionary Computa- tion,2004,8 (5) :471 - 489.
  • 10唐灵寒,苗瑞,杨东,赵言正,江志斌.一种改进的多元指数加权移动平均控制图[J].上海交通大学学报,2010,44(6):868-872. 被引量:4

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部