期刊文献+

基于L-M算法的BP神经网络机械加工误差预测模型 被引量:8

A BP Neural Networks Error Predictive Model of Mechanical Processing Based on L-M Algorithm
在线阅读 下载PDF
导出
摘要 在机械加工过程中,工件尺寸误差影响着产品的质量。建立输入和输出参数之间的预测模型尤为必要。构建基于BP神经网络的机械切削误差预测模型,并采用L-M算法优化训练权值参数,克服了BP神经网络计算复杂、训练时间过长、容易限于局部极小等缺陷。给出实验方案,并以一个机械加工实例验证该BP神经网络误差预测模型的准确性和有效性。 The product quality is affected by error of workpiece in course of mechanical processing.It is very important to set up parameter model of input-output system.A mechanical cutting error predictive model based on BP neural networks was built with L-M algorithm to optimize training parameters,so some disadvantages of BP neural networks such as complex calculation,too long training time and easy to falling into local minimum,were solved.An example of mechanical cutting was given to test the accuracy and effectiveness of BP neural networks predictive model.
出处 《机床与液压》 北大核心 2013年第11期67-71,共5页 Machine Tool & Hydraulics
基金 重庆市教委科学技术研究项目(KJ110818) 重庆理工大学科研启动项目(2010ZD24) 重庆理工大学青年基金项目(2011ZQ25)
关键词 机械加工 BP神经网络 误差预测模型 Mechanical processing BP neural networks Error predictive model
  • 相关文献

参考文献9

二级参考文献44

  • 1陈穆清,赵国荣,曲君吾.GFSINS姿态角速度双路组合方案设计[J].中国惯性技术学报,2006,14(6):15-19. 被引量:6
  • 2A.A.El-Meligi.Effect of Heating Rates on the Formable Oxide Scale on a C-Steel Surface[J].Journal of Materials Science & Technology,2004,20(5):591-594. 被引量:1
  • 3谢楠,李爱平,徐立云.面向可重组制造系统的快速诊断技术研究[J].中国机械工程,2005,16(17):1545-1549. 被引量:6
  • 4邓伟,张宇,杨大正,徐大勇,刘常鹏,刘玉良.钢坯氧化烧损影响因素试验研究[J].冶金能源,2006,25(6):39-40. 被引量:9
  • 5[1]Simon D.Training Radial Basis Neural Net-works with the Extended Kalman Filter[J].Neurocomputing,2002,48(2):455-475.
  • 6[2]Hecht N R.Komogrov's Mapping Neural Network Existence Theorem[A].Caudill M.Butler C,eds.Proceedings of the International Conference on Neural Networks[C].New York:IEEE Press.1987:11-13.
  • 7Reynolds M, Stoumbos Z. Combinations of multivariate shewhart and MEWMA control charts for monitoring the mean vector and covariance matirx [J]. Journal of Quality Technology, 2008,40(4) :381-393.
  • 8Hawkins D, Choi S. A general multivariate exponentially weighted moving-average control chart [J]. Journal of Quality Technology, 2 0 0 7, 3 9 ( 2 ) :118-12 5.
  • 9Molnau W, Runger G. A program of ARL calculation for multivariate EWMA charts [J].Journal of Quality Technology,2001,33(4) : 515-521.
  • 10Sullivan J, Woodall W. A comparison of multivariate control charts for individual observations [J]. Journal of Quality Technology, 1996,28(4) : 399-408.

共引文献20

同被引文献50

  • 1张玲,张鸣明,何伟.基于BP神经网络算法的车牌字符识别系统设计[J].电视技术,2008,32(z1):140-142. 被引量:8
  • 2于影,邵忠喜,于波.摆线轮啮合齿形工作范围的确定[J].机械设计与研究,2006,22(5):65-67. 被引量:8
  • 3马宁.船舶艉轴管镗孔工装架设工艺[J].中国修船,2007,20(6):26-28. 被引量:2
  • 4KESSENTINI Y, PAQUET T, HAMADOU A B. Off-line handwritten word recognition using multi-stream hidden markov models[J]. Pat- tern Recognition Letters,2010,31 ( 1 ) :60-70.
  • 5SHANTHI N, URA1SWAMY K. A novel SVM-based handwritten tamil character recognition system[J]. Pattern Analysis and Applica- tions,2010,13(2) : 173-180.
  • 6KALAICHELVI V. Application of neural networks in character rec- ognition[J]. International Journal of Computer Applications, 2012, 12 (52) : 183-192.
  • 7BARVE S. Optical character recognition using artificial neural net- work[J]. International Journal of Advanced Research in Computer Engineering & Technology, 2012 (4) : 131-133.
  • 8PERWEJ Y. Machine recognition of handwritten characters using neurM networks[J]. International Journal of Computer Applications, 2011,12(14) : 196-204.
  • 9TUYSUZ Oguzhan, ALTINTAS Yusuf, FENG Hsi-Yung. Prediction of Cutting Forces in Three and Five-axis Ball- end Milling with Tool Indentation Effect [ J ]. International Journal of Machine Tools and Manufacture, 2013,66 ( 3 ) : 66-81.
  • 10高峰,李艳,田沙,黄玉美,郝来成,王俊岭.数控成形砂轮磨齿机的在机测量方法研究[J].仪器仪表学报,2008,29(3):540-544. 被引量:19

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部