期刊文献+

融合灰度相对变换和非局部均值的图像分割 被引量:2

Image Segmentation Based on Gray Relative Transformation and Non-local Mean
在线阅读 下载PDF
导出
摘要 针对非均匀光照图像分割精度不高等问题,提出了一种融合灰度相对变换和非局部均值的模糊熵分割算法。首先利用非局部均值滤波对图像进行去噪,将像素与局部极值的相对值代替像素本身灰度值,根据灰度相对变换求取局部隶属度,引入Sobel算子修正隶属度,降低灰度跳变对分割的影响;借助非局部空间信息整合水平-垂直两个方向建立隶属度矩阵,继而进行直觉模糊化形成直觉模糊熵;最后利用最小熵值法分割图像。仿真实验表明,本文提出的分割算法取得了较好的分割效果,并在错分率、过分割和欠分割等评价指标上至少提高13.59%、3.18%和2.48%。 To solve the problem of low precision of non-uniform illumination image segmentation, a fuzzy entropy segmentation algorithm is proposed, which combines gray-scale relative transformation and non-local mean. First, the image is denoised by non-local mean filtering, the relative value of pixel and local extreme value is substituted for the gray value of pixel itself, the local membership degree is obtained according to the relative transformation of gray scale, Sobel operator is introduced to modify membership and reduce the influence of gray jump on segmentation. Integrating horizontal and vertical directions with non-local spatial information, the membership matrix is established, and then intuitionistic fuzzy entropy is formed by intuitionistic fuzzy. Finally, the image is segmented by minimum entropy method. Simulation experiments show that the proposed segmentation algorithm has achieved good segmentation results and improved at least 13.59%, 3.18%, and 2.48% on evaluation indexes such as misclassification rate, over-segmentation, and under-segmentation, respectively.
作者 兰文宝 车畅 LAN Wen-bao;CHE Chang(School of Technology,Harbin University,Harbin 150001,China)
出处 《控制工程》 CSCD 北大核心 2020年第10期1726-1735,共10页 Control Engineering of China
基金 2019年度黑龙江省高等教育教学改革研究项目(SJGY20190397)。
关键词 非均匀光照 图像分割 灰度相对变换 非均值滤波 边缘检测 直觉模糊熵 Uneven lighting image segmentation grayscale relative transformation non-mean filtering edge detection intuitionistic fuzzy entropy
  • 相关文献

参考文献7

二级参考文献87

  • 1赵于前,杨元,王琨.基于模糊集理论的迭代多值化图像分割[J].光电子.激光,2009,20(10):1403-1409. 被引量:8
  • 2黄国顺,刘云生.关于Vague集的模糊熵[J].计算机工程与应用,2005,41(33):48-50. 被引量:33
  • 3刘永学,李满春,毛亮.基于边缘的多光谱遥感图像分割方法[J].遥感学报,2006,10(3):350-356. 被引量:38
  • 4范平,梁家荣,李天志.Vague集的新模糊熵[J].计算机工程与应用,2007,43(13):179-181. 被引量:34
  • 5Gau W L,Buehrer D J.Vague sets[J].IEEE Transactions on System,Man and Cybernetics, 1993,23(2) :610-614.
  • 6Deschrijver G,Kerre E E.On the relationship between some extensions of fuzzy set theory[J].Fuzzy Sets and Systems,2003,133 (2) :227-235.
  • 7Deschrijver G, Kerre E E.On the composition of intuitionistic fuzzy relations[J].Fuzzy Sets and Systems, 2003,136(3) : 333-361.
  • 8De Kumar S,Biswas R,Roy R A.Some operations on intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,2000,114(3) :477-484.
  • 9Szmidt E, Kacprzyk J.Entropy for intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,2001,118(3) :467-477.
  • 10Szmidt E,kacpizyk J.Distances between intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2002,114(3 ) : 505-518.

共引文献84

同被引文献26

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部