期刊文献+

非计划再入院风险预测研究 被引量:9

Research on Risk Prediction of Unplanned Readmission
在线阅读 下载PDF
导出
摘要 为改善患者身体健康,降低非计划再入院率,减轻患者负担和社会资源浪费,本研究基于我国某区域卫生信息平台的医疗数据,利用机器学习方法,构建了非计划再入院风险预测模型.不同于已有仅预测了再入院概率的研究,本研究通过将风险预测建模为多分类问题,实现了在时间和可能性两个维度对再入院风险进行预测.通过调整机器学习算法参数设置,构建了基于神经网络、随机森林和支持向量机算法的3大类共10个再入院风险备选预测模型.基于真实数据集的实验结果表明,在备选风险预测模型中,使用多项式核函数的支持向量机模型预测效果最好,预测准确率达到96.65%.本研究成果可以使医疗机构基于患者历史医疗数据,从时间和可能性两个维度更全面、精准地评估患者再入院风险,进而采取必要的干预措施,降低非计划再入院率. To improve patients’health,decrease unplanned hospital readmission rate,alleviate patients’burden and prevent social resources waste,an unplanned hospital readmission risk prediction model was built,utilizing machine learning method and based on a dataset collected from a regional health care information platform of China.Different from existing works which only predict readmission risk,this research tried to model the problem from a multi-class classification view and predict readmission time and probability simultaneously.10 classifiers were built by adjusting the parameters of neural network,random forest and support vector machine.Experiments on real dataset showed that the support vector machine classifier using polynomial kernel function performed best in terms of prediction accuracy,which was about 96.96%.The research result can assess readmission risk more precisely in time and probability based on patients’historical health care data.With the help of the result,medical agencies can adopt proper interventions and reduce unplanned hospital readmission rate.
作者 李金林 赵秀林 张素威 张增博 朱镜蓉 LI Jin-lin;ZHAO Xiu-lin;ZHANG Su-wei;ZHANG Zeng-bo;ZHU Jing-rong(School of Management and Economics,Beijing Institute of Technology,Beijing 100081,China;China Unicom Online Information Technology Co.,Ltd,Beijing 100032,China;Department of Computer Science and Technology,Nanjing University,Nanjing,Jiangsu 210023,China)
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2020年第2期198-205,212,共9页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(71432002,71572013)。
关键词 非计划再入院 风险预测 机器学习 unplanned hospital readmission risk prediction machine learning
  • 相关文献

参考文献4

二级参考文献26

  • 1刘云焘,吴冲,王敏,乔木.基于支持向量机的商业银行信用风险评估模型研究[J].预测,2005,24(1):52-55. 被引量:16
  • 2张剑飞.数据挖掘中决策树分类方法研究[J].长春师范学院学报(自然科学版),2005,24(1):96-98. 被引量:7
  • 3Sun Y, Han Z, Yu W, et al. A trust evaluation framework in distributed networks: vulnerability analysis and defense against attacks[C]//Proceedings of The 25th Conference on Computer Communications. Barcelona: IEEE, 2006:810 - 822.
  • 4Kevin H, David Z, Cristina N R. A survey of attack and defense techniques for reputation systems [J]. ACM Computing Surveys, 2007,42(1):1 - 31.
  • 5Feng Q Y, Yang Y F, Sun Y, et al. Modeling attack behaviors in rating systems[C]//Proceedings of The 2nd International Workshop on Trust and Reputation Management in Massively Distributed Computing Systems. Beijing:[s. n. ], 2008:241-248.
  • 6Liu Y H, Yang Y F, Sun Y L. Detection of collusion behaviors in online reputation systems[C]//Proceedings of Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, USA: [s. n.], 2008: 1368 - 1372.
  • 7MEHMEDKANTARDZIC.数据挖掘-概念、模型、方法和算法[M].北京:清华大学出版社,2003..
  • 8Altman EI.Corporate financial distress:a complete guide to predicting,Avoiding,and dealing with bankruptcy[M].New York:John Wiley & Sons,1983.
  • 9Hellmann T,Stiglitz J.Credit and equity rationing in markets with adverse selection[J].European Economic Review,2000,44:281-304.
  • 10Qualian J R.Programs for machine learning[J].SanMateo,CA:MorganKaufmann Publishers,1993.

共引文献165

同被引文献71

引证文献9

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部