期刊文献+

基于SVM改进PSO算法的电缆接头温度预测分析 被引量:8

Prediction and analysis of cable joint temperature based on SVM improved PSO algorithm
在线阅读 下载PDF
导出
摘要 为了获得更高的电缆接头温度预测精度,引入了粒子群(PSO)优化算法来动态寻优标准化参数。以PSOSVM算法对电缆接头温度进行预测,生成相应的训练与测试样本。通过训练样本来计算PSO-SVM模型乘子λ及其偏差量B,再根据计算得到的B与λ处理测试样本获得模型精度与预测效果。仿真分析结果表明:采用PSO-SVM方法可以预测得到更加符合实测值的结果,获得比SVM预测方法更优的相对误差,得到的优化参数是完全有效的。大小不一样的数据样本会对预测结果精度造成明显影响,其中样本较多时可以获得相对更高的预测精度。 The particle swarm optimization(PSO)algorithm was introduced to dynamically optimize the standardized parameters in order to obtain higher prediction accuracy of cable joint temperature.The PSO-SVM algorithm was used to predict the cable joint temperature,and the corresponding training and test samples were generated.The training sample is used to calculate the multiplier of PSO-SVM model with lambda or its deviation B,and then the model accuracy and prediction effect are obtained according to the calculated B and lambda processing test sample.Simulation analysis results show that the pso-svm method can be used to predict the results that are more consistent with the measured values,the relative error is better than the SVM prediction method,and the optimized parameters obtained are completely effective.Different size of data samples will have a significant impact on the accuracy of prediction results,among which a large number of samples can obtain a relatively higher prediction accuracy.
作者 樊浩 宁博扬 何森 Fan Hao;Ning Boyang;He Sen(Skills Training Center of State Grid Hebei Electric Power Co.,Ltd.,Baoding 071051,China;State Grid Shanghai Electric Power Company,Shanghai 200072,China)
出处 《电子测量技术》 2019年第21期53-56,共4页 Electronic Measurement Technology
关键词 电力电缆 接头温度预测模型 SVM 粒子群算法 power cable joint temperature prediction model SVM particle swarm optimization
  • 相关文献

参考文献17

二级参考文献129

共引文献156

同被引文献99

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部