期刊文献+

一种基于SVM算法的波形特征识别算法 被引量:1

Waveform Feature Recognition Algorithm Based on SVM
在线阅读 下载PDF
导出
摘要 介绍了一种基于SVM算法的波形特征识别算法,并描述了算法如何应用于人体加速度波形识别,首先使用LIBSVM建立波形判决模型,使用摔倒与正常运动的波形建立训练集对判决模型进行训练并交叉验证模型准确性。通过在连续波形上加入滑动观察窗体,对窗体内的波形片段使用判决模型进行判决,能够实时捕获摔倒波形,并能够较准确地区分摔倒与跑步、走路等正常运动的波形。当出现误判/漏判情况时,能够及时修正训练集,让摔倒判定模型不断得到训练,进而不断提高判决准确率。 A waveform feature recognition algorithm based on SVM is introduced, and how the algorithm is applied to human body acceleration waveform recognition is described. First, a waveform decision model is established by using LIBSVM, and a training set is established to train and cross-verifying the accuracy of the model by using a waveform of falling and normal motion. By adding the sliding observation window on the continuous waveform, the decision model can make judgment based on the waveform segment in the window, in this way the falling waveform is detected in real time, and can be divided from the waveform of normal motion such as running and walking. In that case of misjudgment, the training set can corrected in time, the fall determination model is continuously trained, and the judgment accuracy is continuously improved.
作者 王涛 WANG Tao
出处 《现代导航》 2019年第6期440-444,共5页 Modern Navigation
关键词 加速度波形 机器学习算法 摔倒检测 LIBSVM Acceleration Waveform Machine Learning Algorithm Falling Detection LIBSVM(Library for Support Vector Machines)
  • 相关文献

参考文献1

二级参考文献6

  • 1[1]Keerthi S and Gilbert E G.Convergence of a generalized SMO algorithm for SVM classifier design[J].Machine Learning,2002,46:351-360.
  • 2[2]Keerthi S S,Shevade S K,Bhattacharyya C and Murthy K R K.Improvements to Platt's SMO algorithm for SVM classifier design[J].Neural Computation,2001,13:637-649.
  • 3[3]Lin C J.On the convergence of the decomposition method for support vector machines.IEEE Transactions on Neural Networks,12(6):1288-1298.
  • 4[4]Platt J C.Fast training of support vector machines using sequential minimal optimization.In B.Sch"olkopf,C.J.C.Burges,and A.J.Smola,editors,Advances in Kernel Methods-Support Vector Learning,Cambridge,MA,1998.MIT Press.
  • 5[5]Chih-Chung Chang and Chih-Jen Lin,LIBSVM:a library for support vector machines[J].2001.
  • 6[6]Vladimir N.Vapnik统计学习理论的本质[M].北京:清华大学出版社,2000.

共引文献3

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部