期刊文献+

基于补偿机制的NSCT域红外与可见光图像融合 被引量:21

Infrared and visible image fusion based on the compensation mechanism in NSCT domain
在线阅读 下载PDF
导出
摘要 针对传统基于非下采样Contourlet变换和脉冲耦合神经网络的图像融合方法易出现图像失真的缺点,本文提出一种基于小波变换与PCNN补偿的NSCT域内红外与可见光图像融合方法。首先将红外和可见光图像分别进行NSCT分解,得到低频分量和高频分量;然后对低频分量进行二维小波分解,得到1个低频子带和3个方向子带,对其低频子带采用局部能量加权的方法进行融合,其余3个子带采用绝对值取大的方法进行融合;NSCT分解的高频子带融合规则分为对最高层的融合和其他层的融合,最高层采用绝对值取大的方法进行融合,而其余层采用的是基于改进型的PCNN的方法进行融合;最后将得到的低频子带和高频子带进行NSCT重构获得融合图像。合成及真实图像集实验结果表明,本文算法相对于传统的融合方法增加了图像的纹理和细节信息,有效地抑制了图像失真问题,具有较高的融合精度与较快的融合效率。 A novel infrared and visible image fusion method was presented based on wavelet transform and PCNN in NSCT domain according to the problem of image distortion which usually caused by the traditional non sampling contoudet transform. Firstly, the low frequency sub-bands and high frequency sub-bands of the infrared and visible image could be obtained by NSCT. The low frequency sub- bands and directional sub-bands of the infrared and visible images could be obtained from the obtained low frequency sub-band by using wavelet transform. Secondly, the proposed weighted local energy method was employed to fuse the acquired low frequency sub-bands, and the maximum method was projected to fuse the acquired directional sub-bands. Thirdly, the maximum method was still employed to fuse the highest level of the high frequency sub-bands obtained by the NSCT, and the improved PCNN was projected to achieve fusion of the other levels of the high frequency sub-bands. Finally, the fusion image could be obtained by integrating the acquired low frequency sub-bands and high frequency sub-bands with the NSCT. Experiments with the synthetic and real image sets showed that the proposed method could better express the texture and detail information of the fusion images compared with the traditional fusion methods, which also could address the problem of the image distortion effectively.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2016年第4期860-870,共11页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61401190 U1233125 61462062) 江西省主要学科学术带头人培养计划项目(201208421) 江西省自然科学基金重点项目(20133ACB20004) 江西省优势学科团队建设计划项目(20152BCB24004) 江西省科技落地计划项目(201408083) 航空科学基金(2015ZC56009) 无损检测技术教育部重点实验室开放基金(ZD201529001) 江西省教育厅青年科学基金(GJJ150706)项目资助
关键词 图像融合 非下采样CONTOURLET变换 脉冲耦合神经网络 小波变换 image fusion non-subsampled contourlet transform pulse coupled neural networks wavelet transform
  • 相关文献

参考文献17

  • 1LIU Z, BLASCH E, XUE Z, et al. Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34( 1 ) : 94-109.
  • 2DING M, WEI L, WANG B. Research on fusion method for infrared and visible images via compressive sensing[ J ]. Infrared Physics & Technology, 2013, 57: 56-67.
  • 3许良凤,林辉,胡敏.基于差分进化算法的多模态医学图像融合[J].电子测量与仪器学报,2013,27(2):110-114. 被引量:26
  • 4柯泽贤,江汉红,张朝亮.时空域结合的红外弱小运动目标检测新方法[J].仪器仪表学报,2013,34(6):1401-1405. 被引量:9
  • 5KIM Y, LEE C, HAN D, et al. Improved additive- wavelet image fusion [ J ] IEEE Geoscience and Remote Sensing Letters, 2011, 8(2) : 263-267.
  • 6刘斌,刘维杰,马嘉利.基于三通道不可分对称小波的多聚焦图像融合[J].仪器仪表学报,2012,33(5):1110-1116. 被引量:14
  • 7IBRAHIM S, WIRTH M. Visible and IR data fusion technique using the contourlet transform [ C ]. IEEE International Conference on Computational Science and Engineering, 2009,2: 42-47.
  • 8刘坤,郭雷,常威威.基于Contourlet变换的区域特征自适应图像融合算法[J].光学学报,2008,28(4):681-686. 被引量:57
  • 9YANG S, WANG M, JIAO L, et al. Image fusion based on a new contour|et packet [ J 1. Information Fusion, 2010, 11(2) : 78-84.
  • 10LI S, YANG B, HU J. Performance comparison of different multi-resolution transforms for image fusion[J]. Information Fusion, 2011, 12(2) : 74-84.

二级参考文献96

共引文献175

同被引文献127

引证文献21

二级引证文献132

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部