期刊文献+

基于三阶累积量的红外弱小运动目标检测新方法 被引量:21

NEW METHOD FOR MOVING DIM TARGET DETECTION BASED ON THIRD-ORDER CUMULANT IN INFRARED IMAGE
在线阅读 下载PDF
导出
摘要 为检测强杂波背景中的红外弱小运动目标,提出了一种基于三阶累积量的检测新方法.该方法利用图像中目标经过时像素点灰度值有起伏变化这一特点,将其看作是一种非高斯弱瞬态信号,通过构造三阶累积量对其进行检测.此三阶累积量估计中的去均值处理同时实现了背景杂波的抑制,较好地改善了信杂比(SCR),提高了单帧检测性能.实验表明,该方法能够有效地抑制强杂波背景,在SCR>1时,能可靠检测目标. A new algorithm based on third-order cumulant was proposed to detect a moving dim infrared target under heavy background. Because the grey-scale value of a pixel in an image has fluctuation when a target passes by, this fluctuation can be viewed as a non-Gaussian weak transient signal, and its third-order cumulant can be calculated to detect this signal. The process of average-value-subtraction in the estimation of the third-order cumulant also suppresses the background clutter, and leads to a great improvement of the signal to clutter ratio (SCR) and the probability of the detection in single frame. The experimental results show that the algorithm can effectively suppress heavy clutter background and reliably detect dim infrared targets when SCR is larger than 1.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2006年第5期364-367,共4页 Journal of Infrared and Millimeter Waves
基金 国防预研基金项目(51402030105DZ0177)
关键词 弱小目标检测 瞬态信号检测 三阶累积量 红外图像序列 dim target detection transient signal detection third-order cumulant IR image sequence
  • 相关文献

参考文献6

二级参考文献21

  • 1[1]Nikhil R P, Sankar K P. A review on image segmentation techniques [ J ]. Pattern Recognition, 1993, 26: 1277-1294.
  • 2[2]WANG D, Haese-Coat V, Bruno A, et al. Some statistical properties of mathematical morphology[ J]. IEEE Trans. on Signal Processing, 1995, 43(8): 1955-1965.
  • 3[3]WANG D. A multiscale gradient algorithm for image segmentation using watersheds[ J]. Pattern Recognition, 1997,30:2043-2052.
  • 4[4]Alvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion [ J ]. SIAM Number. Anal. , 1992,29:845-866.
  • 5[5]Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1991,13 (6): 583-598.
  • 6Gilbert Strang, Vasily Strela. Short wavelets and matrix dilation equation[J]. IEEE Transactions on Signal Processing, 1995,43(1):108-115.
  • 7Strela V, Heller P N, Strang G, et al. The application of multiwavelet filterbanks to image processing[J]. IEEE Trans. Imaging processing, 1999,8(4):548-563.
  • 8Jie Liang, Thomas W. Parks. A translation-invariant wavelet representation algorithm with application[J]. IEEE Transactions on Signal Processing,1996,44(2):225-232.
  • 9Nason G P, Silverman B W. The Stationary Wavelet Transform and Some Statistical Applications[M]. Lecture notes in statistics. A. Antoniadis Ed. Berlin:Springer Verlag, 1995,281-299.
  • 10Strela V, Walden A T. Signal and image denoising via wavelet thresholding: orthogonal and biorthogonal, scalar and multiple wavelet transforms[R]. Imperial College, Statistics Section, Technical Report TR-98-01(1998).

共引文献36

同被引文献173

引证文献21

二级引证文献162

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部