期刊文献+

基于二代curvelet变换的图像融合研究 被引量:89

Research on Image Fusion Based on the Second Generation Curvelet Transform
原文传递
导出
摘要 曲波(Curvelet)作为一种新的多尺度分析方法比小波更加适合分析二维图像中的曲线或直线状边缘特征,而且具有更高的逼近精度和更好的稀疏表达能力。将curvelet变换引入图像融合,能够更好地提取原始图像的特征,为融合图像提供更多的信息。第二代curvelet理论的提出也使得其理论更易理解和实现。因此,提出了一种基于第二代curvelet变换的图像融合方法,首先将图像进行curvelet变换,然后在相应尺度上利用融合规则将curvelet系数融合,最后进行重构得到融合结果。对多聚焦图像进行了实验,采用均方误差、偏差指数和相关系数对融合结果进行了客观评价,并与基于小波变换的融合进行了比较,实验结果表明该方法除分解2层时与小波性能相当,取其他分解层数时均获得更好的融合效果。 Curvelet, as a new multiscale analysis algorithm, is more appropriate for the analysis of the image edges such as curve and line characteristics than wavelet, and it has better approximation precision and sparsity description. When the curvelet transform is introduced to image fusion, the characteristics of original images are taken better and more information for fusion is obtained. The proposal of the second generation curvelet theory makes it under-stood and implemented more easily. Then the second generation curvelet transform based image fusion method is proposed. Firstly, the source images are decomposed using curvelet transform, then the curvelet coefficients are fused with the fusion regular in the corresponding scales, and finally the fused coefficients are reconstructed to obtain fusion results. Multi-focus images are taken as experimental data, mean square error, difference coefficient, correlation coefficient are used to evaluate the results, and comparison with results based on wavelet transform is also carried out . The results show that when decomposition level is 2, this method gets fusion result of similar quality with wavelet, but for other decomposition levels this method gets much better fusion results than wavelet.
出处 《光学学报》 EI CAS CSCD 北大核心 2006年第5期657-662,共6页 Acta Optica Sinica
基金 国家自然科学基金(60175001)资助课题
关键词 图像处理 图像融合 CURVELET变换 RIDGELET变换 多聚焦图像 image prosessing image fusion curvelet transform ridgelet transform multi-focus image
  • 相关文献

参考文献11

二级参考文献43

  • 1Fogel D B, Fogel L J. An introduction to simulated evolutionary optimization. IEEE Trans on NN, 1994, 5(1) :3-14.
  • 2Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans.Pattern Analysis and Machina Intelligence, 1989, 11(7) :674-693.
  • 3Zhang Z, Blum R S. A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proc IEEE, 1999, 87(8):1315-1326.
  • 4David A Y. Image merging and data fusion by means of the discrete two-dimensional wavelet transform, J Opt Soc Am (A), 1995, 12(9)-1834-1841.
  • 5Toet A. Hierarchical image fusion. Machine Vision and Application, 1990, 3(2) : 1- 11.
  • 6Burt P T, Lolczynski P J. Enhanced image capture through fusion. In: Proc. 4^th Internat. Conf. on Computer Vision, Berlin, Germany, 1993. 173-182.
  • 7Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Trans , 1983, COM-31 ( 1 )532-540.
  • 8Hall D L. Mathematical Techniques in Multisensor Data Fusion. Boston: Artech House, 1992. 20-59.
  • 9Genderen J L, van Pohl C. Image fusion: Issues, techniques and applications. Intelligent Image Fusion.Proc EARSeL Workshop, Strasbourg, France, 1994.18-26.
  • 10Burt P J, Kolczynski R J. Enhanced image capture through fusion . Proceedings of the 4th International Conference on Computer Vision, 1993, S: 173-182

共引文献122

同被引文献748

引证文献89

二级引证文献491

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部