期刊文献+

碳同位素标记法鉴别芳烃降解菌研究 被引量:1

Identification of arene degradation bacteria using carbon isotope labeling method
在线阅读 下载PDF
导出
摘要 从油田采出水中富集培养石油烃降解菌,利用^(13) C标记的甲苯作为碳源和变性梯度凝胶电泳技术,从中鉴定和考察能够降解甲苯的细菌群落。结果表明:从采出水中富集培养的复合菌群经过500d的厌氧降解,对石油烃降解率达到36.4%,甲烷产量为201.2μmol;以^(13) C标记的甲苯为碳源,经过60d的培养,复合菌群对其降解率达到67%,12 C标记的甲苯降解率为69%,两种碳源标记甲苯的降解率差异不显著;将离心中的重带^(13) C-DNA片段回收测序,鉴别出3种芳烃降解菌。 The degradation bacteria of petroleum hydrocarbon were enriched and cultured from the oilfield water. Using 13 C-toluene as carbon source and denaturing gradient gel electrophoresis ( DGGE) technology to identify and investigate the bac-terial community which could degrade the toluene. The results show that after 500 days anaerobic degradation the petroleum hydrocarbon degradation rate is 36. 4% by complex bacterium, and the methane yield is 201. 2μmol. It is also found that af-ter 60 days culture the carbon source13 C-toluene degradation rate is 67% by the complex bacterium. Meanwhile, after 60 days culture the 12 C-toluene degradation rate is 69%, and two kinds of toluene degradation rate are not significantly different. 13 C-DNA is recovered and identified for three types of aromatic hydrocarbon degrading bacteria.
出处 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期57-62,共6页 Journal of China University of Petroleum(Edition of Natural Science)
基金 中国石油天然气集团公司科学研究与技术开发项目(2008D-4704-2)
关键词 碳同位素 菌株鉴定 CsCl密度梯度 DGGE分析 芳烃 carbon isotope bacteria identification CsCl density gradient DGGE analysis arene
  • 相关文献

参考文献22

  • 1GIEG L M, DUNCAN K E, SUFLITA J M. Bioenergyproduction via microbial conversion of residual oil to natu-ral gas [J]. Appl Environ Microbiol, 2008,74(10):3022-3029.
  • 2PHAM V D, HNATOW L L, ZHANG S, et al. Charac-terizing microbial diversity in production water from an A-laskan mesothermic petroleum reservoir with two inde-pendent molecular methods [J]. Environ Microbiol,2009,11(1):176-187.
  • 3GRAY N D, SHERRY A, LARTER S R, et al. Biogenicmethane production in formation waters from a large gasfield in the North Sea [J]. Extremophiles, 2009,13(3):511-519.
  • 4DUNCAN K E, GIEG L M, PARISI V A, et al. Biocor-rosive thermophilic microbial communities in Alaskanworth slope oil facilities [J]. Environ Sci Technol,2009,43(20):7977-7984.
  • 5JONES D M, HEAD I A, GRAY N D, et al. Crude oilbiodegradation via methanogenesis in subsurface petrole-um reservoirs [J]. Nature, 2008,451(7175):176-180.
  • 6BAMFORTH S M, SINGLETON I. Bioremediation of pol-ycyclic aromatic hydrocarbons: current knowledge and fu-ture directions [J]. Journal Chemical Technology Bio-technology, 2005,80(7):723-736.
  • 7CHEN Y, MURRELL J C. When metagenomics meetsstableisotope probing: progress and perspectives [J].Trends in Microbiology, 2010,18(4):157-163.
  • 8XIA W, ZHANG C, ZENG X, et al. Autotrophic growthof nitrifying community in an agricultural soil [J]. TheISME Journal, 2011,5(7):1226-1236.
  • 9Gu Guizhou,Li Zheng,Zhao Dongfeng,Zhao Chaocheng.Isolation and Characterization of a Thermophilic Oil-Degrading Bacterial Consortium[J].China Petroleum Processing & Petrochemical Technology,2013,15(2):82-90. 被引量:3
  • 10FREITAG T E, CHANG L, PROSSER J I. Changes inthe community structure and activity of betaproteobacte-rial ammonia-oxidizing sediment bacteria along a fresh-water marine gradient [J]. Environ Microbiol, 2006,8(4):684-696.

二级参考文献20

共引文献16

同被引文献15

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部