期刊文献+

异构云计算体系结构及其多资源联合公平分配策略 被引量:28

A Heterogeneous Cloud Computing Architecture and Multi-Resource-Joint Fairness Allocation Strategy
在线阅读 下载PDF
导出
摘要 资源分配策略是当前云计算研究领域中的一个重要研究热点,异构云计算体系结构下的复杂应用问题研究中,最基本的问题在于如何将总体有限的资源分配给多个租户或应用,以达到效率或收效最大化.但是,在经典的资源分配问题中,任务或者用户往往是"贪婪"的;因此,在总体资源有限的前提下,资源分配的公平性就显得尤为重要.为了满足不同的任务需求,达到多种资源分配的公平性,设计了一个虚拟化的异构云计算体系结构,提出了该体系结构下基于占优资源的多资源联合公平分配算法(maximizing multi-resource fairness based on dominant resource,MDRF),并且证明了算法的帕累托等相关属性;给出了占优资源熵(dominant resource entropy,DRE)和占优资源权重(dominant resource weight,DRW)的定义,占优资源熵更加精确地刻画了用户资源请求与任务所调度到的服务器资源之间的适应程度,使系统的自适应能力更强同时提高了资源利用率.占优资源权重保障了用户优先获取资源的优先次序,协同所采用保障公平性的Max-Min Fairness策略,使资源的分配更加有序.实验表明,我们的策略有更高的系统资源利用率,并且使需求与供给更加匹配,进而使用户的占优资源获取更多,提高了服务质量. Resource allocation strategies are an important research hotspot about cloud computing at present. The most fundamental problem is how to fairly allocate the finite amount of resources to multiple users or applications in complex application under heterogeneous cloud computing architecture, at the same time, to achieve maximize resource utilization or efficiency. However, tasks or users are often greedy for classical resource allocation problems, therefore, under the condition of finite amount of resource, the fairness of resource allocation is particularly important. To meet different task requirements and achieve multiple types resource fairness, we design a heterogeneous cloud computing architecture and present an algorithm of maximizing multi-resource fairness based on dominant resource(MDRF). We further prove the related attributions of our algorithm such as Pareto efficiency, and give the definition of dominant resource entropy (DRE) and dominant resource weight (DRW). DRE accurately depicts the adaption degree between the resource requirement of user and the resource type of server allocated for user tasks, and makes the system more adaptive and improves the system resource utilization. DRW guarantees the priority of users obtaining resource when cooperating with the adopted Max-Min strategy guaranteeing fairness, and makes the system resource allocation more ordered. Experimental results demonstrate that our strategy has more higher resource utilization and makes resource requirements and resource provision more matching. Furthermore, our algorithm makes users achieve more dominant resource and improves the quality of service.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第6期1288-1302,共15页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61373040 61173137) 教育部博士点基金项目(20120141110073) 新疆维吾尔自治区自然科学基金项目(2015211B030)
关键词 多资源公平分配 占优资源熵 占优资源权重 最大最小公平性 异构云 multi-resource fairness allocation dominant resource entropy(DRE) dominant resourceweight(DRW) Max-Min Fairness heterogeneous cloud
  • 相关文献

参考文献36

  • 1Ghodsi M Z A, Hindman B A, Konwinski, et al. Dominant resource fairness: Fair allocation of multiple resource types [C] //Proc of FAST'll. Berkeley, CA: USENIX Association, 2011 : 1-14.
  • 2Wei W, Baochun L, Ben L. Dominant resource fairness in cloud computing systems with heterogeneous servers [C]//Proc of the 33rd IEEE INFOCOM. Piscataway, NJ: IEEE 2014:583-591.
  • 3Xiao Z, Song W, Chen Q. Dynamic resource allocation using virtual machines for cloud computing environment [J]. IEEE Trans on Parallel and Distributed Systems, 2013, 24 (6) : 1107-1117.
  • 4Jinhai W, Chuanhe H, Kai H, et ai. An energy-aware resource allocation heuristics for VM scheduling in cloud [C] //Proe of the 10th IEEE Int Conf on High Performance Computing and Communications & 2013 IEEE Int Conf on Embedded and Ubiquitous Computing(HPCC_EUC). Berlin: Springer, 2013:587-594.
  • 5左利云,曹志波,董守斌.云计算虚拟资源的熵优化和动态加权评估模型[J].软件学报,2013,24(8):1937-1946. 被引量:24
  • 6Fei X, Fangming L, Hal J, et al. Managing performance overhead of virtual machines in cloud computing: A survey, state of the art, and future directions[J]. Proceedings of the IEEE, 2014, 102(1): 11-31.
  • 7Sheng D, Wang C L. Dynamic optimization of muhiattribute resource allocation in self-organizing clouds [J]. IEEE Trans on Parallel and Distributed Systems, 2013, 24(3): 464-478.
  • 8师雪霖,徐恪.云虚拟机资源分配的效用最大化模型[J].计算机学报,2013,36(2):252-262. 被引量:78
  • 9唐卓,朱敏,杨黎,唐小勇,李肯立.云环境中面向随机任务的用户效用优化模型[J].计算机研究与发展,2014,51(5):1120-1128. 被引量:7
  • 10Baruah S K, Gehrke J E, Plaxton C G. Fast scheduling of periodic tasks on multiple resources [C] //Proc of the 9th Int Parallel Processing Syrup. Piscataway, NJ: IEEE, 1995~ 280-288.

二级参考文献58

  • 1宾雪莲,杨玉海,金士尧.一种基于分组与适当选取策略的实时多处理器系统的动态调度算法[J].计算机学报,2006,29(1):81-91. 被引量:17
  • 2Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 3Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 4Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 5Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 6Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 7Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 8Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 9Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.
  • 10Beltrame G, Brandolese C, Fornaciari W, Salice F, Sciuto D, Trianni V. Dynamic modeling of inter-instruction effectsfor execution time estimation//Proceedings of the 14th Inter- national Symposium on System Synthesis. Canada, 2001: 136-141.

共引文献105

同被引文献218

  • 1丁丁,罗四维,艾丽华.基于双向拍卖的适应性云计算资源分配机制[J].通信学报,2012,33(S1):132-140. 被引量:25
  • 2李千目,张晟骁,陆路,戚湧,张宏.一种Hadoop平台下的调度算法及混合调度策略[J].计算机研究与发展,2013,50(S1):361-368. 被引量:12
  • 3李朝勇,刘混举.基于B/S模式的刮板输送机可靠性管理系统开发[J].煤炭技术,2015,34(4):329-331. 被引量:3
  • 4李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 5GHODSI A, ZAHARIA M, HINDMAN B, et al. Dominant resource fairness: Fair allocation of multiple resource types [ C]//NSDI 2011: Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation. Berkeley, CA: USENIX Asso- ciation, 2011:323-336.
  • 6WANG W, LIANG B, LIB. Multi-resource fair allocation in hetero- geneous cloud computing systems [ J]. IEEE Transactions on Paral- lel & Distributed Systems, 2015, 26(10): 2822-2835.
  • 7ZHU Q, OH J C. An approach to dominant resource fairness in dis- tributed environment [ M]// IEA/AIE 2015: Proceedings of the 28th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, LNCS 9101. Berlin: Springer-Verlag, 2015:141 - 150.
  • 8HOLLAND J H. Adaptation in Natural and Artificial Systems [ M]. Cambridge, MA: MIT Press, 1992: 89- 121.
  • 9STORN R, PRICE K. Differential evolution -- a simple and effi- cient heuristic for global optimization over continuous spaces [ J]. Joumal of Global Optimization, 1997, 11 (4) : 341 - 359.
  • 10Wikipedia. Max-min fairness[ EB/OL]. [2015-06-10]. http://en. wikipedia, org/wiki/Max-minfairness.

引证文献28

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部