期刊文献+

云环境下计算资源适用性评估

Evaluation of Computing Resource Applicability in Cloud Computing
在线阅读 下载PDF
导出
摘要 随着云计算和虚拟化技术的发展,一种应用不再是只能部署在一台物理机上,而是可将物理机的计算资源虚拟化成一台虚拟机来部署该应用。传统的分配物理资源放置虚拟机,只考虑应用所需资源是否充足,而未考虑应用类型对物理资源需求的特殊性。本文提出计算资源适用性概念——计算资源当前状态适合部署的应用类型。当需要部署某一应用时,首先判别应用所属类型,同时获取应用对资源占用量;然后根据当前候选资源节点的监控数据,分别进行静态评估和动态评估,计算出综合评估结果,得出部署应用的虚拟机和物理机的映射关系。实验结果表明,与传统的虚拟机放置算法相比,提出的计算资源适用性评估算法,使得应用响应时间变短,提高了应用效率与资源利用率。 With development of cloud computing and virtualization, it is possible that one physical machine can be virtualized one virtual machine to support an application. In tradition, virtual machine placement just considers whether there is sufficient re- source, ignoring the relationship of application type and physical resource status. This paper gives the concept of compute re- source applicability, which means that the current status of computing resource is suitable for deploying which application type. When deploying an application, firstly we judge the application type and acquire the occupation of resource, then combine moni- tor data with the occupation to do static estimation and dynamic estimation. The optimal virtual machine placement policy can be achieved by compositing the results. The experimental results show that, the proposed solution could effectively improve the effi- ciency of application and the use ratio of resource, and shorten the response time of application.
出处 《计算机与现代化》 2014年第1期147-151,共5页 Computer and Modernization
关键词 云计算 虚拟化 虚拟机放置 应用类型 计算资源适用性 cloud computing virtualization virtual machine placement application type computing resource applicability
  • 相关文献

参考文献12

  • 1Buyya R,Yeo C S,Venugopal S. Cloud computing and emerging IT platforms:Vision,hype,and reality for delivering computing as the 5th utility[J].Future Genera-tion Computer Systems,2009,(06):599-616.
  • 2陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. 被引量:1314
  • 3Armbrus M,Fox A,Griffitth R. Above the Clouds:A Berkeley View of Cloud Computing .Technical Re-port:UCB/EECS-2009-28[R].EECS Department University of California,Berkeley,2009.
  • 4师雪霖,徐恪.云虚拟机资源分配的效用最大化模型[J].计算机学报,2013,36(2):252-262. 被引量:78
  • 5Iyer R,Illikkal R,Tickoo O. VM3:Measuring,modeling and managing VM shared resources[J].Comput-er Networks,2009,(17):2873-2887.
  • 6李强,郝沁汾,肖利民,李舟军.云计算中虚拟机放置的自适应管理与多目标优化[J].计算机学报,2011,34(12):2253-2264. 被引量:124
  • 7Soundararajan V,Anderson J M. The impact of manage-ment operations on the virtualized datacenter[A].2010.326-337.
  • 8Nakada H,Hitofuchi T. Toward virtual machine packing optimization based on genetic algorithm[A].2009.651-654.
  • 9Takahiro Hirofuchi,Hidemoto Nakada,Hirotaka Ogawa. Eliminating datacenter idle power with dynamic and in-telligent VM relocation[A].2010.645-648.
  • 10Rao L,Liu X,Xie L. Minimizing electricity cost:Optimization of distributed internet data centers in multi-e-lectricity market environment[A].2010.1145-1153.

二级参考文献84

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2尹红军,李京,宋浒,李凌.云计算中运营商效益最优的资源分配机制[J].华中科技大学学报(自然科学版),2011,39(S1):51-55. 被引量:13
  • 3Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 4Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 5Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 6Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 7Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 8Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 9Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.
  • 10Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. In: Proc. of the 6th Symp. on Operating System Design and Implementation. Berkeley: USENIX Association, 2004. 137-150.

共引文献1528

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部