摘要
针对用户任务预算不足或期望完成时间较短,云服务方无法保障任务全部完成,提出基于任务分类和线性规划优化模型调度策略,使任务完成数最大化,同时考虑任务重要性。算法根据任务长短及重要性进行分类,然后建立任务计算资源关系矩阵及3个相关约束条件,以任务完成数最大化为目标函数,搭建线性规划模型,并给出算法实现。模拟实验表明,在同样的用户任务预算和期望完成时间条件下,该算法任务完成数最大值明显高于经典算法。
For smaller task budgets or higher demand for the time of task completion and the resource provider not providing all services, a scheduling algorithm based on linear programming model and task classification is proposed, with maximum number of performed tasks, and the priority of tasks is considered. The tasks are classified according to the priority and length of tasks. Then LPM is built with relation matrix and three constraints, taking the maximum number of performed tasks as objective function, and algorithms are given. The simulation shows that the maximum number of performed tasks is greater than that of classic algorithms with a smaller task budget or higher demand for task completion time.
出处
《微型电脑应用》
2013年第10期5-8,共4页
Microcomputer Applications
基金
国家自然科学青年科学基金项目(61005008)
江苏省现代教育技术研究基金技术应用重点项目(2012-R-23010)
关键词
云计算
调度算法
线性规划
优化模型
任务预算
Cloud Computing
Scheduling Algorithm
Linear Pogramming Model
Optimization Model
Task Budget