期刊文献+

基于ANSYS和神经网络的液压挖掘机动臂轻量化设计方法研究 被引量:5

Research Method for Lightweight Design on Arm of Hydraulic Excavator Based on ANSYS and Neural Network
在线阅读 下载PDF
导出
摘要 以挖掘机的动臂结构为研究对象,构建考虑静态强度、刚度、轻量化等性能的优化设计数学模型,以ANSYS软件为工具,对挖掘机动臂进行了轻量化设计计算,针对轻量化设计过程中设计变量非线性的特点,建立了人工神经网络的模型,对ANSYS软件优化设计的结果进行了验证,有效地降低了动臂的质量。结果表明,用两种方法结合起来进行轻量化设计的方法合理可行,对其他的机械进行轻量化设计具有一定的指导意义。 By taking a structure of the moving arm of hydraulic excavator as the research object, the mathematical model of opti-mal design taking performance into consideration of static strength, stiffness and lightweight was built. Based on the software ANSYS software as tools, the design and calculation for lightweight on the moving arm of hydraulic excavator were completed. The model of the neural network was built by aiming at the nonlinearity characteristics of the lightweight design variable in process, so as to verify the op-timization results by ANSYS software, and the weight of the moving arm is significantly reduced. Results indicate that, this method combined with ANSYS and neural network is reasonable and feasible for lightweight design, and it has a certain guiding significance for lightweight design on other machineries.
出处 《机床与液压》 北大核心 2015年第1期136-140,共5页 Machine Tool & Hydraulics
基金 国家科技支撑计划(2012BAF02B00 2011BAF11B01)
关键词 液压挖掘机 动臂 轻量化 有限元分析 人工神经网络 Hydraulic excavator Moving arm Lightweight design Finite element analysis Artificial neural network
  • 相关文献

参考文献9

二级参考文献21

  • 1张义民,贺向东,刘巧伶,闻邦椿.非正态分布参数的车辆零件可靠性稳健设计[J].机械工程学报,2005,41(11):102-108. 被引量:24
  • 2范军锋,陈铭.中国汽车轻量化之路初探[J].铸造,2006,55(10):995-998. 被引量:39
  • 3J.Roshanian,Z.Keshavarz.Effect of Variable Selection on Multidisciplinary Design Optimization:a Flight Vehicle Example[J].Chinese Journal of Aeronautics,2007,20(1):86-96. 被引量:7
  • 4KODIYALAM S, YANG R J, GU L, et al. Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment[J]. Struct. Multidisc. Optim., 2004, 26: 256-263.
  • 5YANG R J, GU L, THO C H. Multidisciplinary design optimization of a full vehicle with high performance computing[C]//The 42nd AIAA/ASME.ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference and Exhibit, AIAA Paper Number: AIAA-2001-1273.
  • 6FANG H, RAIS-ROHANI M, LIU Z. A comparative study of metamodeling methods for multiobjective crashworthiness optimization[J], Computers & Structures, 2004, 82: 2121-2136.
  • 7RABEAU S, PHILIPPE D, BENNIS F, et al. Collaborative optimization of complex systems: A multidisciplinary approach[J]. Int. J. Interact. Des. Manuf., 2007(1): 209-218.
  • 8MESSAC A, ISMAIL-YAHAYA A. Multiobjective robust design using physical programming[J]. Structural and Multidisciplinary Optimization, 2002, 23(5): 357-371.
  • 9LIU M, WU C. Genetic algorithm using sequence rule chain for multi-objective optimization in re-entrant micro-electronic production line[J]. Robotics and Computer-Integrated Manufacturing, 2004, 20: 225-236.
  • 10BEYENG D Y, KYUNG K C. A new response surface methodology for reliability-based design optimization[J]. Computers & Structures, 2004, 82: 241-256.

共引文献154

同被引文献442

引证文献5

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部