期刊文献+

Modeling of IPMC Cantilever's Displacements and Blocking Forces 被引量:3

Modeling of IPMC Cantilever's Displacements and Blocking Forces
原文传递
导出
摘要 The motion of an Ionic Polymer Metal Composite (IPMC) cantilever under a periodic voltage control is modeled. In our finite element 3D model, we follow both the free tip displacements and the blocking forces for various thicknesses and elastic constants of the ionomer membrane. It turns out that the maximum displacement of the free tip strongly depends on the value of the Young's modulus of the electrodes. Furthermore, the maximum blocking force, Fmax, increases with the thickness of the ionomer membrane. At constant values of Young's moduli of the electrodes and ionomer membrane thickness, if the Young's modulus of the ionomer membrane varies within the range from 0.2 MPa to 1 GPa, the change of Fmax is less than 10 %. The simulated maximal displacements, blocking forces and electrical currents are compared with the corresponding sets of ex- perimental data, respectively. Qualitative agreement between the simulated and the respective measured data profiles is ob- tained. Furthermore, it is found that the assumption of electrostatic interactions in the cation depleted region of the ionomer membrane has a negligible effect. The advantage of the model consists in its simplicity. The motion of an Ionic Polymer Metal Composite (IPMC) cantilever under a periodic voltage control is modeled. In our finite element 3D model, we follow both the free tip displacements and the blocking forces for various thicknesses and elastic constants of the ionomer membrane. It turns out that the maximum displacement of the free tip strongly depends on the value of the Young's modulus of the electrodes. Furthermore, the maximum blocking force, Fmax, increases with the thickness of the ionomer membrane. At constant values of Young's moduli of the electrodes and ionomer membrane thickness, if the Young's modulus of the ionomer membrane varies within the range from 0.2 MPa to 1 GPa, the change of Fmax is less than 10 %. The simulated maximal displacements, blocking forces and electrical currents are compared with the corresponding sets of ex- perimental data, respectively. Qualitative agreement between the simulated and the respective measured data profiles is ob- tained. Furthermore, it is found that the assumption of electrostatic interactions in the cation depleted region of the ionomer membrane has a negligible effect. The advantage of the model consists in its simplicity.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2015年第1期142-151,共10页 仿生工程学报(英文版)
基金 Support of the work by the National Natural Sci- ence Foundation of China (Grant No. 51175251), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011734) and support of the work by the Czech Science Foundation via project 14-36566G are grate- fully acknowledged.
关键词 ionic polymer metal composite ACTUATOR blocking force finite element method ionic polymer metal composite, actuator, blocking force, finite element method
  • 相关文献

参考文献1

二级参考文献2

共引文献12

同被引文献14

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部