期刊文献+

基于分布式算法的实时电价策略研究 被引量:2

Research of Real-time Pricing Based on Distributed Algorithm
在线阅读 下载PDF
导出
摘要 在智能电网中,实时电价(RTP)是解决智能电网供需平衡的理想手段。通过分析国内外实时电价机制发展现状,将家庭用户负荷分为四类,综合考虑用户间的不同用电特性,构建了相应的用电效益优化模型,采用分布式算法,结合某地区的具体数据,并针对不同的需求响应方案、蓄电池成本、系统大小对模型进行仿真。结果表明,基于分布式算法的需求响应实时电价策略可使社会用电效益最大化。 In smart grid,real-time pricing is an ideal scheme to solve the balance of supply and demand.Based on the analysis of the current development of real-time pricing mechanism,dividing the family load into four kinds and considering the electricity characteristics of different users,this paper established the corresponding power utility optimization model.Distributed algorithm is used to simulate for the different demand response schemes,the cost of battery and the size of system with the data of a region.The results show that it can maximize social electricity benefits by using the strategy of demand response of real-time pricing of electricity.
出处 《水电能源科学》 北大核心 2015年第1期194-199,共6页 Water Resources and Power
关键词 智能电网 实时电价 需求响应 用电效益 分布式算法 smart grid real-time pricing demand response electricity benefit distributed algorithm
  • 相关文献

参考文献9

二级参考文献117

共引文献249

同被引文献18

  • 1J K Grubera, M Prodanovica. Two - stage optimization for building energy management[ J]. Energy Procedia, 2014,62:346 - 354.
  • 2P Samadi, et al. Optimal real - time pricing algorithm based on u- tility maximization for smart grid E C ]. First IEEE Conference on Smart Grid Communications. Gaithersburg: IEEE, 2010:415 - 420.
  • 3P Tarasak. Optimal real - time pricing under load uncertainty based on utility maximization for smart grid[ C ]. Smart Grid Man- agement and Service Design (IEEE SmartGridComm 2011 ). Sin- gapore : IEEE, 2011:321 - 326.
  • 4Wang Yu, Mao Shi -wen, R M Nelms. Distributed online algo- rithm for optimal real -time [ J ]. IEEE Internet of Things Journal, 2014,1 ( 1 ) :70 - 80.
  • 5Song Xin, Qu Jia - yu. An improved real - time pricing algorithm based on utility maximization for smart grid [ C ]. Proceeding of the 11 th World Congress on Intelligent Control and Automation. Shenyang: IEEE, 2014:2509 - 2513.
  • 6Wang Zhang, et al. An efficient algorithm for optimal real - time pricing strategy in smart grid. He Xing, et al. A recurrent neural network for optimal real - time price in smart grid[ J]. Neuroeomputing, 2015,149:608 - 612.
  • 7B Ramanathan, V Vittal. A framework for evaluation of advanced direct load control with minimum disruption [ J ]. IEEE Transac- tions on Power Systems, 2008,23(4) :1681 -1688.
  • 8Wu Hao, Zhang Peng, Lin Guihua. Smoothing approximations for some piecewise smooth fuctions[J]. J. Oper. Res. Soc. China, 2015 - 3:317 - 329.
  • 9葛少云,贾鸥莎,刘洪.基于遗传灰色神经网络模型的实时电价条件下短期电力负荷预测[J].电网技术,2012,36(1):224-229. 被引量:71
  • 10冯兆丽,茅佳佳,温书胜,梁天猛.智能电网实时电价研究综述:模型与优化方法[J].工业控制计算机,2012,25(2):87-88. 被引量:9

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部