期刊文献+

智能电网分段实时定价优化策略研究 被引量:9

Optimal Piecewise Real-Time Pricing Strategy for Smart Grid
在线阅读 下载PDF
导出
摘要 在智能电网实时定价研究中,为了提高用户偏好刻画的精度,在二次效用函数的基础上提出了一种与用户实际情况更贴切的分段效用函数。以所有用户的效用之和减去电力供应商成本后的结果作为目标函数,发电容量为约束构造分段实时定价的系统模型。针对模型中分段效用函数的整体不光滑性引入一种光滑化方法,可以将分段光滑的函数全局近似光滑化以优化模型求解的有效性。光滑后的效用函数代入到系统模型中,可直接使用拉格朗日乘子法对模型进行求解。仿真结果验证了分段实时定价策略的有效性和合理性。 Modeling users' preferences plays an important role in real - time pricing for smart grid. In order to improve the accuracy of the preferences model, in this paper, we proposed a piecewise utility function on the basis of quadratic utility function, which is more appropriate to the users' reality. Adopted the sum of all utility functions mi- nus the cost imposed to the energy provider as the objective function, while the consumption levels of all users were coupled via the limited available generation capacity to structure the piecewise real - time pricing model. At the same time, we introduced a smoothing method for the piecewise smooth function. This method can construct a new smooth function to approximate the original function to improve the validity of solution. Substituted the new smooth utility function into the system model, it can directly use the Lagrange multiplier method to solve the model. Finally, simulation results verify the validity and rationality of the piecewise real - time pricing strategy.
作者 金颖丰 高岩
出处 《计算机仿真》 CSCD 北大核心 2016年第4期171-175,205,共6页 Computer Simulation
基金 国家自然科学基金项目(11171221) 美国IBM公司共享大学项目(SUR)
关键词 智能电网 实时定价 效用函数 光滑化方法 拉格朗日乘子 Smart gird Real - time pricing Utility function Smoothing method Lagrange multiplier
  • 相关文献

参考文献16

  • 1彭继慎,杨慕紫,马冰.含分布式发电的改进BFO算法配电网无功优化[J].计算机仿真,2015,32(5):127-131. 被引量:6
  • 2冯兆丽,茅佳佳,温书胜,梁天猛.智能电网实时电价研究综述:模型与优化方法[J].工业控制计算机,2012,25(2):87-88. 被引量:9
  • 3葛少云,贾鸥莎,刘洪.基于遗传灰色神经网络模型的实时电价条件下短期电力负荷预测[J].电网技术,2012,36(1):224-229. 被引量:71
  • 4J K Grubera, M Prodanovica. Two - stage optimization for building energy management[ J]. Energy Procedia, 2014,62:346 - 354.
  • 5钟小莉.集成预测模型及基电价预测中的应用[J].计算机仿真,2012,29(8):200-203. 被引量:1
  • 6P Samadi, et al. Optimal real - time pricing algorithm based on u- tility maximization for smart grid E C ]. First IEEE Conference on Smart Grid Communications. Gaithersburg: IEEE, 2010:415 - 420.
  • 7P Tarasak. Optimal real - time pricing under load uncertainty based on utility maximization for smart grid[ C ]. Smart Grid Man- agement and Service Design (IEEE SmartGridComm 2011 ). Sin- gapore : IEEE, 2011:321 - 326.
  • 8Wang Yu, Mao Shi -wen, R M Nelms. Distributed online algo- rithm for optimal real -time [ J ]. IEEE Internet of Things Journal, 2014,1 ( 1 ) :70 - 80.
  • 9Song Xin, Qu Jia - yu. An improved real - time pricing algorithm based on utility maximization for smart grid [ C ]. Proceeding of the 11 th World Congress on Intelligent Control and Automation. Shenyang: IEEE, 2014:2509 - 2513.
  • 10Wang Zhang, et al. An efficient algorithm for optimal real - time pricing strategy in smart grid. He Xing, et al. A recurrent neural network for optimal real - time price in smart grid[ J]. Neuroeomputing, 2015,149:608 - 612.

二级参考文献115

共引文献142

同被引文献78

引证文献9

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部