期刊文献+

基于小波变换的磁瓦表面缺陷检测方法研究 被引量:9

ON MAGNETIC TILE SURFACES DEFECT DETECTION BASED ON WAVELET TRANSFORM
在线阅读 下载PDF
导出
摘要 针对磁瓦表面缺陷人工检测时存在效率低、稳定性差的问题,提出一种将小波变换应用于磁瓦表面缺陷检测的视觉检测方法。实验中对随机样品磁瓦和模板正品磁瓦进行相同的处理,对比两者处理过程中采集到的参数来判别实验磁瓦是否存在缺陷。先通过小波去噪处理图像,利用灰度直方图阈值提取图像并二值化,计算对比阈值提取区域匹配相似度;再用Canny边缘检测算法提取出阈值提取区域轮廓边缘,经过形态学操作,计算对比最大轮廓长度,最大轮廓面积和凸凹平均面积;最后通过设定提取特征的合格区间来判别磁瓦是否存在缺陷。实验结果显示,该算法对倒角不合格、偏磨、掉块和起层等缺陷的识别效果较好,可将磁瓦表面存在的显著缺陷准确地检测出来。 Aiming at the problems of low efficiency and poor stability in manual detection of magnetic tile surface defect,we propose a visual detection method which applies the wavelet transform to detecting the defects on magnetic tile surfaces.In experiment,we process the random sample magnetic tiles and the template quality tiles in the same way,and compare their parameters collected from the processes to determine whether the experimental magnetic tiles are defective.First,the method processes the image with wavelet denoising,and uses grey histogram threshold to extract the image and to binarise it,as well as calculates and compares the threshold values for extracting the matching similarity of the segmentation region; then it employs Canny edge detection algorithm to extract the edge contour of the region,through morphological operation,it calculates and compares the maximum length and the maximum area of the contour,as well as the average area of the convex and concave; finally,it determines whether a magnetic tile is defective by setting the qualified range for feature extraction.Experimental results show that the algorithm has good recognition effect on the defects of unqualified chamfering,uneven grinding,pit and layer,and the marked defects on the magnetic tile can be recognised accurately.
出处 《计算机应用与软件》 CSCD 北大核心 2014年第11期210-213,274,共5页 Computer Applications and Software
基金 四川省科技支撑计划项目(2011CGZ0049)
关键词 磁瓦 小波变换 凸凹检测 图像处理 Magnetic tile Wavelet transform Concavo-convex detection Image processing
  • 相关文献

参考文献17

  • 1Holland J H, Reitman J S. Cognitive systems based on adaptive algo- rithms[ M]. Pattern-Directed Inference Systems, D. A. Waterman and F. Hayes-roth, Eds. New York: Academic, 1978.
  • 2Peter Merz, Bernd Freisleben. Genetic local search for the TSP: New results [ C ]//IEEE International Conference, 1997 : 159 - 164.
  • 3Byung Joo Park, Hyung Rim Choi, Hyun Soo Kim. A hybrid genetic algorithm for the job shop scheduling problems [ J ]. Computers & In- dustrial Engineering,2003,45 (4) :597 - 613.
  • 4Cheng Jin, Li Q S. Reliability analysis of structures using artificial neu- ral network based genetic algorithms[ J]. Computer Methods in AppliedMechanics and Engineering,2008,197 (45 - 48 ) :3742 - 3750.
  • 5Bir Bhanu, Sungkee Lee,John Ming. Adaptive Image Segmentation U- sing a Genetic Algorithm[ J]. IEEE Trans. on System, Man, and Cy- bernetics, 1995,25 ( 12 ) : 1543 - 1567.
  • 6Onieva E, Naranjo J E, Milan6s V, et al. Automatic lateral control for unmanned vehicles via genetic algorithms [ J ]. Applied Soft Compu- ting,2011,11 ( I ) : 1303 - 1309.
  • 7Larrafiaga P, Lozano J A. Estimation of Distribution Algorithms [ M ]. A New Tool for Evolutionary Computation. Boston: Kluwer Academic Publishers, 2002.
  • 8Sun Jianyong,Zhang Qingfu, Edward P Tsang. DE/EDE: a new evo- lutionary algorithm for global optimization [ J ]. Information Science, 2005,169 ( 3 - 4 ) :249 - 262.
  • 9Zhao Yaon,Chen Ynehui,Pan Meng, et al. A region reproduction al- gorithm for global numerical optimization [ C ]//Proceedings of the 2008 Congress on Evolutionary Computation,2008:3601 -3605.
  • 10Jiang D, Wu Z, Zou J, et al. Algorithm based on heuristic subspace searching strategy for solving investment portfolio optimization problems [ C ]//Proceedings of the 2008 Congress on Evolutionary Computation, 2008:607 -611.

二级参考文献21

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:408
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1277
  • 3李德毅,杜鹋.不确定性人工智能[M].北京:国防工业出版社,2004.137-166,242-307.
  • 4刘常昱.不确定性知识表示研究[D].南京:解放军理工大学,2005.67-84.
  • 5Y W Leung, F Wang. An orthogonal genetic algorithm with quantization for global numerical optimization[ J].IEEE Transactions on Evolutionary Computation, 2001,5 (J) :41 - 53.
  • 6Zhenguo Tu, Yong Lu. A robust stochastic genetic algorithm (StGA) for global numerical optimization[ J]. IEEE Trausactions On Evolutionary Computation, 2004,8 (5) : 456 - 470.
  • 7Xin Yao, Yong Liu, Guangming Lin. Evolutionary programming made faster[ J]. IEEE Transactions on Evolutionary Computation. 1999,3(2) :82 - 102.
  • 8李德毅 淦文燕 刘璐莹.人工智能与认知物理学 [A]..中国人工智能进展2003[C].北京: 北京邮电大学出版社,2003.6-14.
  • 9Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, ( 8): 338~353
  • 10Ross T J. Fuzzy Logic with Engineering Applications [M]. Bei jing:Publishing House of Electronics Industry, 2001

共引文献1055

同被引文献68

引证文献9

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部