期刊文献+

一种快速红外图像分割方法 被引量:31

FAST INFRARED IMAGE SEGMENTATION METHOD
在线阅读 下载PDF
导出
摘要 为准确地实现目标识别,提出了将二维最大熵图像分割方法应用于红外图像实行分割.利用图像的二维直方图,二维最大熵分割方法不仅考虑了象素的灰度信息,而且还充分利用了象素的空间领域信息,能取得较为理想的分割结果.然而该方法所需的巨大运算量限制了其实际应用.运用PSO算法代替穷尽搜索获得阈值向量,求解速度可提高300~400倍,提高了分割效率.通过对实际的红外图像分割表明,这种方法简单、有效. In order to detect objects accurately, an image thresholding approach named two dimensions (2-D) maximum entropy was proposed to do infrared image segmentation. By using the 2-D histogram of image, the 2-D maximum entropy method not only considers the distribution of gray information, but also takes advantage of the spatial neighbor information. However, its great computation was often an obstacle in application. The threshold vector was obtained by using a new optimization algorithm, namely, the particle swarm optimization algorithm (PSO). The new way was proposed to realize the 2-D maximum entropy method instead of exhaustive search method. And it is 300 ~ 400 times faster than the traditional method. Through the example of segmenting the infrared image, the proposed method has been proved to be a fast method of segmenting infrared image.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2005年第5期370-373,共4页 Journal of Infrared and Millimeter Waves
基金 国防重点实验室基金资助项目(51476040103JW13)
关键词 图像分割 微粒群优化 目标识别 image segmentation particle swarm optimization entropy target recongnition
  • 相关文献

参考文献9

  • 1张坤华,王敬儒,张启衡.复杂背景下扩展目标的分割算法研究[J].红外与毫米波学报,2002,21(3):233-237. 被引量:39
  • 2张长江,付梦印,金梅,张启鸿.一种红外图像对比度增强的小波变换法[J].红外与毫米波学报,2004,23(2):119-124. 被引量:32
  • 3Abutaleb A S. Automatic thresholding of gray-level pictures using two-dimension entropy [J]. Computer Vision, Graphics and Image Processing, 1989, 47( 1 ): 22-32.
  • 4Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of the histogram [ J ]. Computer Vision, Graphics and Image Processing, 1985, 29(3): 273-285.
  • 5陈果,左洪福.图像分割的二维最大熵遗传算法[J].计算机辅助设计与图形学学报,2002,14(6):530-534. 被引量:77
  • 6Kennedy J, Eberhart R C, Particle swarm optimization[ C ], Proceedings of the IEEE International Conference on Neural Networks, 1995, 1942-1948.
  • 7Kennedy J, Eberhart R C, Shi Y, Swarm Intelligence [ M ],San Francisco: Morgan Kaufmann Publishers, 2001.
  • 8Davis L. Handbook of Genetic Algorithm [ M ]. New York:van Nostrand, 1991.
  • 9Haralick R M, Shapiro L G. Image segmentation techniques [J], Comput. Vision Graphics Image Process, 1985,29:100-132.

二级参考文献17

  • 1邢延,张天序.复杂背景下基于知识的目标识别算法研究[J].模式识别与人工智能,1995,8(3):237-242. 被引量:5
  • 2李立源,龚坚,陈维南.基于二维灰度直方图最佳一维投影的图像分割方法[J].自动化学报,1996,22(3):315-322. 被引量:49
  • 3龚坚,李立源,陈维南.基于二维灰度直方图Fisher线性分割的图像分割方法[J].模式识别与人工智能,1997,10(1):1-8. 被引量:28
  • 4章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 5GONG Wu-Peng, WANG Yong-Zhong. Contrast enhancement of infrared image via wavelet transform [ J ]. Chinese Journal of National University of Defense Technology(宫武鹏,王永仲.一种基于小波变换的红外图像对比度增强技术.国防
  • 6YANG Bi-Wu, GUO Xiao-Song, WANG Ke-Jun, et al.New algorithm of infrared image enhancement based on nonlinear extension [ J ]. Chinese J. Infrared and Laser Engineering(杨必武,郭晓松,王克军,魏皖宁.基于直方图非线性拉伸的红
  • 7Johnstone I M, Silverman B W. Wavelet threshold estimators for data with correlated noise [ J ]. Journal of the Royal Statistical Society, Series B, 1997, 59: 319-351
  • 8ZHU Meng-Yu, ZHAO Bao-Jun, HAN Yue-Qiu. A method of removing 1/f noise based on wavelet transform [ J ]. Chinese J.Journal of Beijing Institute of Technology(朱梦宇,赵保军,韩月秋.用小波变换去除红外图像中1/f噪声的方法.北
  • 9Lang M, Guo H, Odegend J E, et al. Nonlinear processing of a shift-invariant DWT for noise reduction [ R ]. In SPIE Conference on wavelet applications. Orlando: FL, April,1995, 2491
  • 10Hall P, Koch I. On the feasibility of cross-validation in image analysis [ J ]. SIAM J. Appl. Math., 1992, 52 ( 1 ):292-313

共引文献143

同被引文献265

引证文献31

二级引证文献228

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部