期刊文献+

结合小波变换和图像主元分析的人脸识别 被引量:15

Combining wavelet transform with image principal component analysis for face recognition
在线阅读 下载PDF
导出
摘要 提出了一种基于小波变换和图像主元分析(IMPCA)相结合的人脸识别方法。小波变换具有保留主要信息,去除噪声的作用,对人脸图像进行小波变换,对变换后的近似图像采用IMPCA方法进行识别。IMPCA是一种快速有效的直接通过图像抽取特征的方法,从图像重构的角度分析了实现IMPCA的两种模式,两种模式分别增强了图像的行特征和列特征,将它们的识别结果进行决策融合可以获得更好的识别效果。基于ORL人脸数据库的实验表明,所提出的方法在识别率上优于单独的IMPCA方法。 A face recognition method based on wavelet and Image Principal Component Analysis (IMPCA) is presented. Approximate coefficients of an image can be gotten and its noise is weakened by transforming it with wavelet.The proposed method firstly transforms face image with wavelet to get approximate image,then recognizes with the approximate image based on IMPCA.IMPCA is a rapid feature extract method from matrix itself, no needing regard an image as a vector.This paper presents the basic theory of IMPCA from the view of minimizing the mean reconstruction error and shows two different modules of feature extract based on IMPCA.It analyzes the feature generated from two modules and finds they respectively enhance row characters and column characters.It fuses the recognition results with two features to achieve better accuracy rate.The experiment result on ORL face database shows the proposed method is efficient and the recognition accuracy rate is better than IMPCA only.
作者 杨军 袁红照
出处 《计算机工程与应用》 CSCD 北大核心 2010年第4期1-3,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60736046~~
关键词 图像主元分析 小波变换 人脸识别 融合 Image Principal Component Analysis (IMPCA) wavelet transform face recognition fusion
  • 相关文献

参考文献10

  • 1Kirby M, Sirovich L.Application of the KL procedure for the characterization of human faces[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 1990,12( 1 ) : 103-108.
  • 2Turk M,Pentland A.Eigenfaces for recognition[J].Cognitive Neuroscience, 1991,3(1 ) :71-86.
  • 3Yang M H.Kernel eigenfaces vs Kernel fisherfaces:Face recogni- tion using Kernel methods[C]//IEEE Conference Automatic Face and Gesture Recognition(AFGR), 2002: 215-220.
  • 4Gottumukkal R,Asari V K.An improved face recognition technique based on modular PCA approach[J].Pattem Recognition Letter,2004, 25(4) :429-436.
  • 5Yang J,Zhang D,Frangi A F,et al.Two dimensional PCA:A new approach to appearance-based face representation and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,24(1):131-137.
  • 6Wang L W,Wang X,Zhang X R, et al.The equivalence of two-dimensional PCA to line-based PCA[J].Pattern Recognition Letters, 2005,26( 1 ) : 57-60.
  • 7Yang J,Yang J Y.From image vector to matrix:A straightforward image projection technique IMPCA vs PCA[J].Pattern Recognition, 2002,35(9) : 1997-1999.
  • 8Xu Yong,Zhang D.An approach for directly extracting features from matrix data and its application in face recognition[J].Neurocomputing, 2008,71 : 1857-1865.
  • 9Zhang D Q,Zhou Z H.(2D)^2PCA:Tow-directional tow-dimensional PCA for efficient face representation and recognition[J].Neurocomputing, 2005,69( 1/3 ) :224-231.
  • 10Antanini M,Barlaud M,Mathlec P,et al.Image coding using wavelet transform[J].IEEE Trans IP, 1995,1 (2) :205-220.

同被引文献92

引证文献15

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部