期刊文献+

APPROXIMATE DUALITY OF g-FRAMES IN HILBERT SPACES 被引量:9

APPROXIMATE DUALITY OF g-FRAMES IN HILBERT SPACES
在线阅读 下载PDF
导出
摘要 In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames, and generalize some of the known results in approximate duality of frames to g-frames. We also get some results for fusion frames, and perturbation of approximately dual g-frames. We show that approximate duals are stable under small perturbations and they are useful for erasures and reconstruction. In this article, we introduce and characterize approximate duality for g-frames. We get some important properties and applications of approximate duals. We also obtain some new results in approximate duality of frames, and generalize some of the known results in approximate duality of frames to g-frames. We also get some results for fusion frames, and perturbation of approximately dual g-frames. We show that approximate duals are stable under small perturbations and they are useful for erasures and reconstruction.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期639-652,共14页 数学物理学报(B辑英文版)
关键词 FRAME G-FRAME approximate duality PERTURBATION reconstruction Frame g-frame approximate duality perturbation reconstruction
  • 相关文献

参考文献2

二级参考文献53

  • 1YANG Deyun & ZHOU Xingwei Department of Information & Technology, Nankai University, Tianjin 300071, China,Department of Mathematics, Nankai University, Tianjin 300071, China,Department of Computer Science, Taishan College, Taian 271000, China.Irregular wavelet frames on L^2 (R^n)[J].Science China Mathematics,2005,48(2):277-287. 被引量:4
  • 2LI YunZhang,LIAN QiaoFang.Gabor systems on discrete periodic sets[J].Science China Mathematics,2009,52(8):1639-1660. 被引量:4
  • 3Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 4Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 5Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
  • 6Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
  • 7Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
  • 8Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
  • 9Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
  • 10Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)

共引文献42

同被引文献28

  • 1常乐,葛广州,王涛,杨刚帅.建筑施工中作业人员不安全行为分析及管控措施[J].建筑经济,2020(S01):144-148. 被引量:9
  • 2陶常利,单继荣.伪对偶g-框架[J].山东科技大学学报(自然科学版),2006,25(4):98-100. 被引量:3
  • 3Wenchang Sun.G-frames and g-Riesz bases[J]. Journal of Mathematical Analysis and Applications . 2005 (1)
  • 4Describing functions: Atomic decompositions versus frames(J)Monatshefte für Mathematik . 1991 (1)
  • 5R. J. Duffin,A. C. Schaeffer.??A class of nonharmonic Fourier series(J)tran . 1952 (2)
  • 6Bei Liu,Rui Liu,Bentuo Zheng.??Parseval p -frames and the Feichtinger conjecture(J)Journal of Mathematical Analysis and Applications . 2014
  • 7Chun-Yan Li.??Operator Frames for Banach Spaces(J)Complex Analysis and Operator Theory . 2012 (1)
  • 8AMIR KHOSRAVI,BEHROOZ KHOSRAVI.??Fusion frames and G -frames in Banach spaces(J)Proceedings - Mathematical Sciences . 2011 (2)
  • 9Peter G. Casazza,Gitta Kutyniok,Shidong Li.??Fusion frames and distributed processing(J)Applied and Computational Harmonic Analysis . 2007 (1)
  • 10Yu Can ZHU.Characterizations of g-Frames and g-Riesz Bases in Hilbert Spaces[J].Acta Mathematica Sinica,English Series,2008,24(10):1727-1736. 被引量:38

引证文献9

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部