期刊文献+

A NEW SUFFICIENT CONDITION FOR SPARSE RECOVERY WITH MULTIPLE ORTHOGONAL LEAST SQUARES

在线阅读 下载PDF
导出
摘要 A greedy algorithm used for the recovery of sparse signals,multiple orthogonal least squares(MOLS)have recently attracted quite a big of attention.In this paper,we consider the number of iterations required for the MOLS algorithm for recovery of a K-sparse signal x∈R^(n).We show that MOLS provides stable reconstruction of all K-sparse signals x from y=Ax+w in|6K/ M|iterations when the matrix A satisfies the restricted isometry property(RIP)with isometry constantδ_(7K)≤0.094.Compared with the existing results,our sufficient condition is not related to the sparsity level K.
作者 Haifeng LI Jing ZHANG 李海锋;张静(Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control,College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2022年第3期941-956,共16页 数学物理学报(B辑英文版)
基金 supported by the National Natural Science Foundation of China(61907014,11871248,11701410,61901160) Youth Science Foundation of Henan Normal University(2019QK03).
  • 相关文献

参考文献4

二级参考文献33

  • 1Cai T, Wang L. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans Inf Theory, 2011, 57: 4680- 4688.
  • 2Cai T, Wang L, Xu O. Stable recovery of sparse signal and an oracle inequality. IEEE Trans Inf Theory, 2010, 56: 3516 -3522.
  • 3Cai T, Xu G, Zhang J. On recovery of sparse signal via 11 minimization. IEEE Trans Inf Theory, 2009, 55:3388-3397.
  • 4Candes E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52:489- 509.
  • 5Candes E J, Tao T. Decoding by linear programming. IEEE Trans Inf Theory, 2005, 51:4203-4215.
  • 6Dai W, Milenkovic O. Subspaee pursuit for compressive sensing signal reconstruction. IEEE Trails Inf Theory, 2009, 55:2230-2249.
  • 7Davenport M A, Wakin M B. Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans Inf Theory, 2010, 56:4395- 4401.
  • 8Donoho D L. Compressed sensing. IEGG Trans Inf Theory, 2006, 52:1289-1306.
  • 9Donoho D L, Glad M. Optimally sparse representation in general (nonorthogonal) dictionaries via ll minimization. Proc Nat Acad Sci USA, 2003, 100:2197- 2202.
  • 10Huang S, Zhu J. Recovery of sparse signals using OMP and its variants: Convergence analysis based on RIP. Inverse Problems, 2011, 27: 035003(14pp).

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部