期刊文献+

fusion-Riesz框架和g-Riesz框架的稳定性 被引量:1

Stabilities of fusion-Riesz frames and g-Riesz frames
原文传递
导出
摘要 对fusion-Riesz框架和g-Riesz框架的稳定性进行了研究,得到一些新的结论.这些结果表明,g-Riesz框架的性质与fusion-Riesz框架的性质并不完全一样. We discuss the stabilities of fusion-Riesz frames and g-Riesz frames.Some new results are obtained.These results illustrate that not all the properties of g-Riesz frame are similar to those of fusion-Riesz frames.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期469-472,共4页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01007) 福建省教育厅科研资助项目(JA08013)
关键词 fusion-Riesz框架 g-Riesz框架 稳定性 fusion-Riesz frames g-Riesz frames stability
  • 相关文献

参考文献10

二级参考文献74

  • 1Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 2Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 3Christensen, O.: An Introduction to Prames and Riesz Bases, Birkhauser, Boston, 2003
  • 4Christensen, O.: Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc., 38(3), 273-291 (2001)
  • 5Yang, D. Y., Zhou, X. W., Yuan, Z. Z.: Frame wavelets with compact supports for L2(Rn). Acta Mathernatica Sinica, English Series, 23(2), 349-356 (2007)
  • 6Li, Y. Z.: A class of bidimensional FMRA wavelet frames. Acta Mathematica Sinica, English Series, 22(4), 1051-1062 (2006)
  • 7Zhu, Y. C.: q-Besselian frames in Banach spaces. Acta Mathematica Sinica, English Series, 23(9), 1707- 1718 (2007)
  • 8Li, C. Y., Cao, H. X.: Xd frames and Reisz bases for a Banach space. Acta Mathematica Sinica, Chinese Series, 49(6), 1361-1366 (2006)
  • 9Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl., 322(1), 437-452 (2006)
  • 10Sun, W.: Stability of g-frames. J. Math. Anal. Appl., 326(2), 858-868 (2007)

共引文献49

同被引文献14

  • 1Duffin R J, Schaeffer A C. A class of nonharmonic Fourier series[J]. Trans Amer Math Soc, 1952, 72:341 - 366.
  • 2Christensen O. Frames and bases: An introductory course[ M ]. Boston: Birkhauser, 2008.
  • 3Casazza P G. The art of frame theory[J]. Taiwan Residents Journal of Mathe matics, 2000, 4(2) : 129 -201.
  • 4Eldar Y C. Sampling with arbitrary sampling and reconstruction spaces and oblique dual frame vectors [ J ]. Journal of Fourier A- nalysis and Applications, 2003, 9:77 -96.
  • 5Hell C. A basis theory primer[ M]. Boston: Birkhauser, 2010.
  • 6Casazza P G, Kutyniok G. Frames of subspaces[ J]. Contemp Math, 2004, 345:87 -113.
  • 7Fornasier M. Quasi - orthogonal decompositions of structured frames [ J ]. Journal of Mathematical Analysis and Applications, 2004, 289(1) : 180 -199.
  • 8Asgari M S, Khosravi A. Frames and bases of subspaces in Hilbert spaces[ J]. Journal of Mathematical Analysis and Applica- tions, 2005, 308(2): 541 -553.
  • 9Asgari M S. New characterizations of fusion frames ( frames of subspaces ) [ J ]. Proceedings - Mathematical Sciences, 2009, 119(3) : 369 -382.
  • 10Gavruta P. On the duality of fusion frames [ J ]. Journal of Mathematical Analysis and Applications, 2007, 333 (2) : 871 -879.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部