期刊文献+

一个大豆脱水胁迫响应的bHLH类转录因子的克隆及功能分析 被引量:9

Cloning and functioning analysis of transcription factor GmbHLH response to dehydration stress
在线阅读 下载PDF
导出
摘要 为了获得植物在干旱胁迫反应中起关键作用的基因,本研究以大豆耐旱品种和敏感品种为试验材料,利用前期构建的数字基因表达谱,从中筛选出一个在两种材料间存在表达差异的基因,命名为GmbHLH25。采用实时定量PCR对表达谱的结果进行验证,并克隆得到该基因的全长序列。利用ExPASy的ProtParam工具分析发现GmbHLH25蛋白长度为368aa,含有由50aa组成的保守结构域bHLH。进化树分析表明GmbHLH25蛋白与百脉根、苜蓿中的同源蛋白关系最近,处于同一进化分枝。洋葱表皮亚细胞定位结果表明该蛋白在细胞核中表达。PCR和RT-PCR检测表明GmbHLH25基因已经整合到本生烟草的基因组中。在干旱、高盐胁迫下超表达GmbHLH25基因能提高烟草的耐旱、耐盐能力。本研究结果将为进一步分析该基因参与的耐旱信号传导途径,深入研究bHLH转录因子在植物耐逆反应中的分子机理奠定基础。 Drought stress seriously affects plant growth and development as well as reduces quality and productivity of crops. In order to gain some key functional genes in response to dehydration/drought stress, a digital gene Expression Tag profile of two drought tolerance and sensitivity materials under dehydration had been constructed in our previous study. In the research, a gene encoding bHLH transcription factor, namely GmbHLH25, was identified from expression profile. This gene was significantly induced in leaves and roots under dehydration and the expression showed an obvious difference between two materials. Expression level of GmbHLH25 gene was validated by real-time quantitative PCR. The CDS sequence of GmbHLH had been cloned from two materials. GmbHLH25 gene encodes 368 aa and contains one basic Helix-Loop-Helix(bHLH) motif comprised of 50 amino acid. The homology tree demonstrated that GmbHLH25 was at the same evolutionary branch with homologous proteins of Lotus corniculatus and Medicago. Subcellular localization revealed that GmbHLH25 was distributed preferentially to nucleus. PCR and RT-PCR results showed that GmbHLH25 gene had been integrated into tobacco genome. Over expression of GmbHLH25 gene improved drought and salt tolerance capacities under water-deficit and high salt conditions. This study will help to clarify the molecular mechanisms of plants response to drought.
出处 《中国油料作物学报》 CAS CSCD 北大核心 2013年第6期630-636,共7页 Chinese Journal of Oil Crop Sciences
基金 转基因生物新品种培育重大专项(2011ZX08004-002) 现代农业产业技术体系建设专项(CARS-04-PS08)
关键词 干旱胁迫 大豆 表达谱 GmbHLH25 BHLH 本生烟草 超表达 Drought stress Glycine max Expression profile GmbHLH25 bHLH Nicotiana bertthamiana Overexpression
  • 相关文献

参考文献18

  • 1Chen Li-miao,Li Wen-bin,Zhou Xin-an.Regulatory Network of Transcription Factors in Response to Drought in Arabidopsis and Crops[J].Journal of Northeast Agricultural University(English Edition),2012,19(3):1-13. 被引量:2
  • 2Balazadeh S, Siddiqui H, Allu A D, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence [J]. The Plant Journal, 2010, 62(2): 250-264.
  • 3Dai X Y, Xu Y Y, Ma Q B, et al. Over-expression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis [J]. Plant Physiology, 2007, 143(4):1739-1751.
  • 4Abe H, Urao T, Ito T, et al. Arabidopsis AtbHLH2 (bHLH) and AtMYB2 (MYB) function as transcription activators in abscisic acid signaling [J]. The Plant Cell, 2003, 15(1): 63-78.
  • 5Haake V, Cook D, Riechmann J L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis [J]. Plant Physiology, 2002, 130(2): 639-648.
  • 6Furihata T, Maruyama K, Fujita Y, et al. ABA-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1 [J]. Proceedings of the National Academy of Sciences, 2006, 103(6): 1988-1993.
  • 7Chen H, Lai Z B, Shi J W, et al. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress [J]. BMC Plant Biology, 2010, 10(1): 281-326.
  • 8Li W X, OonoY, Zhu J, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance [J]. The Plant Cell, 2008, 20(8):2238-2251.
  • 9S?derman E, Hjellstr?m M, Fahleson J, et al. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions [J]. Plant Molecular Biology, 1999, 40(6): 1073-1083.
  • 10Massari M E, Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic orgamisms [J]. Molecular and Cellular Biology, 2000, 20(2): 429-440.

二级参考文献36

  • 1Shun-Wu YU,Li-Da ZHANG,Kai-Jing ZUO,Dong-Qin TANG,Xiao-Fen SUN,Ke-Xuan TANG.Brassica napus L. Homeodomain Leucine-Zipper Gene BnHB6 Responds to Abiotic and Biotic Stresses[J].Journal of Integrative Plant Biology,2005,47(10):1236-1248. 被引量:5
  • 2陈爱民,连瑞丽,孙杰,王彦章.豆科模式植物——蒺藜苜蓿[J].植物生理学通讯,2006,42(5):997-1003. 被引量:26
  • 3向珣,曹家树,叶纨芝,王华新.白菜转录因子BcBHLHogu的克隆及其特征分析[J].中国农业科学,2007,40(8):1746-1752. 被引量:4
  • 4Stacey G, Libanlt M, Brechenmacher L, Wan J, May G D. Genetics and functional genomics of legume nodulation. Current Opinion in Plant Biology, 2006, 9(2): 110-121.
  • 5Cook D R. Medicago truncatula: A model in the making. Current Opinion in Plant Biology,1999, 2(4): 301-304.
  • 6Young N D, Cannon S B, Sato S, Kim D, Cook D R, Town C D, Roe B A, Tabata S. Sequencing the genespaces of Medicago truncamla and Lotus japonicus. Plant Physiology, 2005, 137(4): 1174-1181.
  • 7Town C D. Annotating the genome of Medicago truncatula. Current Opinion in Plant Biology, 2006, 9(2): 122-127.
  • 8Massari M E, Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic orgamisms. Molecular and Cellular Biology, 2000, 20(2): 429-440.
  • 9Toledo-Ortiz G. Huq E, Quail P H. The Arabidopsis basic/helixloop-helix transcription factor family. The Plant Cell, 2003, 15(8): 1749-1770.
  • 10Buck M J, Atchley W R. Phylogenetic analysis of plant basic helix-loop-helix proteins. Journal of Molecular Evolution, 2003, 56(6): 742-750.

共引文献29

同被引文献127

引证文献9

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部