期刊文献+

改进的粒子群优化算法在气动设计中的应用 被引量:16

Application of Improved Particle Swarm Optimization Algorithm to Aerodynamic Design
原文传递
导出
摘要 为了提高优化系统的搜索效率,发展出了社会模型这种改进智能优化算法的通用策略,在此基础上,提出了一种基于社会模型的改进粒子群优化(IPSOSM)算法。该算法对社会模型进行了分析并在此指导下,将人工鱼群算法(AFSA)中的聚群行为引入到粒子群优化(PSO)算法中,丰富了粒子之间的优势信息源,增强了粒子的信息共享能力,使得IPSOSM算法能够有效地跳出局部最优。函数测试表明,该算法显著提高了PSO算法的寻优性能。将IPSOSM算法应用到翼型和机翼的气动优化设计之中,取得了良好的结果,从而表明提出的算法简洁有效,具有较好的实用性。 A universal strategy named the social model is developed and a new algorithm named improved particle swarm optimization based on social model (IPSOSM) algorithm is proposed in order to improve the searching efficiency of an opti- mization system. The social model is first analyzed and, with the guidance of the social model theory, the collective action which belongs to artificial fish swarm algorithm (AFSA) is then introduced into particle swarm optimization (PSO) algorithm. This enlarges the best information of particle swarm and improves the ability of communication among the particle swarm, which helps get rid of strapping into a local minimum. Function test results show that the IPSOSM algorithm has much better optimazing ability than the PSO algorithm. The IPSOSM algorithm is applied to an airfoil aerodynamic design and a wing aer- odynamic design and satisfactory optimal results are obtained, which proves the simplicity and efficiency of the social model.
作者 李丁 夏露
出处 《航空学报》 EI CAS CSCD 北大核心 2012年第10期1809-1816,共8页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(11172242)~~
关键词 粒子群优化 人工鱼群算法 社会模型 搜索效率 气动优化设计 particle swarm optimization artificial fish swarm algorithm social model searching efficiency aerodynamic optimization design
  • 相关文献

参考文献15

  • 1Boyd R, Recharson P. Culture and the evolutionary process. Chieago: University of Chicago Press, 1985: 3-15.
  • 2Kennedy J, Eberhart R C. Particle swarm optimization. Proceedings of the 1995 IEEE International Con{erenee on Neural Networks Perth, 1995: 1942-1948.
  • 3Shi Y H, Eberhart R C. A modified particle swarm opti- mizer. Proceedings of IEEE International Conference on Evolutionary Computation. Piscataway, USA.- IEEE Press, 1998, 69-73.
  • 4Jiang Y, Hu T S, Huang C C. An improved particle swarm optimization algorithm. Applied Mathematics and Computation, 2007, 193(1): 231-239.
  • 5李晓磊.一种新型的智能优化方法-人工鱼群算法.杭州:浙江大学系统工程研究所,2003.
  • 6王联国,施秋红,洪毅.PSO和AFSA混合优化算法[J].计算机工程,2010,36(5):176-178. 被引量:13
  • 7胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 8夏露,高正红.一种单亲DNA算法在翼型设计中的应用[J].空气动力学学报,2009,27(3):335-339. 被引量:8
  • 9Buckley H P, Zhou B Y, Zingg D W. Air{oil optimization using practical aerodynamic design requirements. AIAA- 2009-3516, 2009.
  • 10Buckley H P, Zhou B Y, Zingg D W. Airfoil optimization using practical aerodynamic design requirements. AIAA- 2009-3516, 2009.

二级参考文献42

共引文献116

同被引文献158

引证文献16

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部