期刊文献+

粒子群算法中惯性权重的实验与分析 被引量:87

Experiments and analysis on inertia weight in particle swarm optimization
在线阅读 下载PDF
导出
摘要 简要介绍了粒子群算法(PSO),对算法中的重要参数惯性权重进行了系统的实验,分析了固定权重与时变权重的选择问题,并从问题依赖性、种群大小和拓扑结构等方面详细分析了惯性权重对于算法性能的影响.结果表明,惯性权重的问题依赖性较小,随着种群的增大,其取值应适当减小,局部版本下,惯性权重的选择具有更大的自由度. The basic principle of particle swarm optimization (PSO) is introduced briefly in the paper. Sufficient experiments are done on inertia weight that is an important parameter in the algorithm. The selection difference between fixed and time-variant inertia weight is analyzed. And the influence of inertia weight on the algorithm performance is analyzed in detail from different aspects, including the problem dependence, swarm size and topologic structure. The result indicates the inertia weight has little problem dependence, and with the increase of the population its value should decrease properly. The selection of inertia weight has more freedom in the local version of PSO.
出处 《系统工程学报》 CSCD 北大核心 2005年第2期194-198,共5页 Journal of Systems Engineering
基金 国家自然科学基金重点资助项目(70431003).
关键词 粒子群算法 进化计算 惯性权重 particle swarm optimization evolutionary computation inertia weight
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization[ C]. IEEE Int. Conf. on Neural Networks, Piscataway: IEEE Service Center,1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Proc. on Int. Symposium on Micro Machine and Human Science, Piscataway: IEEE Service Center, 1995. 39--43.
  • 3Kennedy J. The Particle Swarm: Social Adaptation of Knowledge[ CI. IEEE Int. Conf. on Evolutionary Computation, Piscataway:IEEE Service Center, 1997. 303-308.
  • 4谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 5Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[Cl. IEEE Int. Conf. on Evolutionary Computation, Piscataway: NJ,IEEE Service Center, 1998. 69-73.
  • 6Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73.
  • 7Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[ J ]. Information Processing Letters, 2003, 85(6):317-325.
  • 8Eberhart R, Shi Y. Comparing Inertia Weigthts and Constriction Factors in Particle Swarm Optimization[ C]. IEEE Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 2000. 84-88.

二级参考文献34

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献421

同被引文献872

引证文献87

二级引证文献1022

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部