期刊文献+

复杂构型高精度静气动弹性分析方法及其应用研究 被引量:3

A High-Fidelity Static Aeroelastic Analysis Method for Complex Configuration and Its Application
在线阅读 下载PDF
导出
摘要 为了准确地预测增升装置的气动弹性变形,基于Navier-Stokes方程求解器和结构静力学方程,建立了一种静气动弹性分析方法。发展了一种全局/局部混合的数据交换方式,解决了复杂构型数据交换过程中相邻部件间数据干扰的问题。同时,建立了变形能力强、引入并行算法的基于RBF插值技术的动网格方法,很好地保证了复杂构型网格的变形能力。此外,为了提高静气弹分析效率,所建立方法根据收敛特点引入了加速收敛技术。通过F6翼身组合体和某大型客机着陆构型,验证文中发展的静气动弹性分析方法的可行性和鲁棒性。分析结果表明,弹性变形最终导致大型客机着陆构型8°迎角状态时的升力系数减小约1.0%。 For a large transport aircraft with high aspect ratio wing, aeroelasticity is one of the most important fac- tors that affects the aerodynamic efficiency of a high-lift configuration. To analyze its static aeroelasticity accurately, we propose the high-fidelity static aeroelastic analysis method based on the solution of Navier-Stokes equations and structural equations. We develop a global-local mixed algorithm for exchanging data between computational fluid dy- namics results and computational structural dynamics results, which eliminates the data interference among adjacent parts of the complex configuration. We also work out the dynamic mesh method that uses the radial basis function interpolation technique that has good elastic deformation the mesh deformation capability of the complex configurati and introduces the parallel algorithm, thus guaranteeing on. In order to enhance the static aeroelastic analysis effi- ciency, we introduce the convergence acceleration technique based on the convergence characteristics. Finally, we use the DLR-F6 wing body configuration and the high-lift configuration of a large transport aircraft to verify the fea- sibility and robustness of the static aeroelastic analysis method. The verification results show that the elastic deform- ation decreases the lift coefficient of the high-lift configuration results by around 1.0% under the influence of aero- elasticity.
机构地区 [ 中国航空研究院
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2015年第1期14-20,共7页 Journal of Northwestern Polytechnical University
关键词 Navier—Stokes方程 静气动弹性力学 RBF插值技术 动网格 大型客机 aeroelasticity, aerodynamic configurations, Navier-Stokes equations, algorithms, computational elh-ciency, aspect ratio, computational structural dynamics, computational fluid dynamics, convergence,deformation, elastic deformation, finite volume method, finite element method, flow fields, lift, in-terpolation, Mach number, mathematical models, radial basis functions, structural dynamics, turbu-lence models, transport aircraft, topology, wings
  • 相关文献

参考文献16

  • 1Garner P L, Meredith P T, Stoner R. Areas for Future CFD Development as Illustrated by Transport Aircraft Applications[ R]. AIAA-1991-1527.
  • 2Vanderburg J W, Eliasson P, Delille T, et al. Geometric Installation and Deformation Effects in High-Lift Flows [ J ]. AIAA Journal, 2009, 47 ( 1 ) : 60-70.
  • 3Liu Y, Bai J Q, Hua J. Static Aeroelasticity Analysis of High Aspect Ratio Wing and the Jig-Shape Design Based on Multi-Block Structural Grid[J]. Advanced Engineering and Materials, 2013, 302:377-383.
  • 4万志强,邓立东,杨超,严德.基于非线性试验气动力的飞机静气动弹性响应分析[J].航空学报,2005,26(4):439-445. 被引量:24
  • 5Livne E, Terrence A. Weisshaar. Aeroelasticity of Nonconvertional Aircraft Configurations-Past and Future[ J]. Joumal of Air- craft, 2003, 40(6): 1047-1065.
  • 6邱亚松,白俊强,李亚林,周涛.复杂几何细节对增升装置气动性能影响研究[J].航空学报,2012,33(3):421-429. 被引量:13
  • 7白俊强,刘南,邱亚松,陈迎春,李亚林,周涛.大型民用运输机短舱涡流片增升效率以及参数影响研究[J].西北工业大学学报,2013,31(4):522-529. 被引量:5
  • 8John D Anderson.计算流体力学基础及其应用[M].北京:机械工业出版社,2008.
  • 9Frank R. Scattered Data Interpolation: Tests of Some Methods[J]. Math Comp, 1982, 38(175) : 191-200.
  • 10Ahrem R, Beckert A, Wendland H. A Meshless Spatial Coupling Scheme for Large-Scale Fluid-Structure Interpolation Problems [ J]. Computer Modeling in Enginnering and Sciences, 2006, 12:121-136.

二级参考文献60

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:338
  • 2朱军.应用CFD的优化设计方法及复杂构型设计研究.西安:西北工业大学航空学院,2009.
  • 3Meredith P T.Viscous phenomena affecting high-lift sys-tems and suggestions for future CFD development.Agard Conference Proceedings515High-lift System Aerodynam-ics.Neuilly Sur Seine France:Specialised Printing Serv-ices Limited,1993,19:1-8.
  • 4van der Burg J W,Eliasson P,Delille T,et al.Geometric installation and deformation effects in high-lift flows.AIAA Journal,2009,47(1):60-70.
  • 5von Gery H F,Schade N,van der Burg J W,et al.CFD prediction of maximum lift effects on realistic high-lift commercial aircraft configuration.AIAA-2007-4299,2007.
  • 6Rudnik R.Stall behaviour of the eurolift high-lift configu-rations.AIAA-2008-836,2008.
  • 7Rudnik R,Germain E.Re-No.scaling effects on the EU-ROLIFT high-lift configurations.AIAA-2007-752,2007.
  • 8Murayama M,Yokokawa Y,Yamamoto K.Validation study of CFD analysis for high-lift systems.Hamburg,Germany:ICAS,2006.
  • 9Rudnik R,von Geyr H F.The european high-lift project EUROLIFT II objectives,approach,and structure.AIAA-2007-4296,2007.
  • 10Wild J,Brezillon J,Amoignon O,et al.Advance high-lift design by numercal methods and wind tunnel verification within European project EOROLIFT II.AIAA-2007-4300,2007.

共引文献48

同被引文献124

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部