摘要
利用Lyapunov泛函与不等式技巧研究了一类变时滞反应扩散静态递归神经网络解的P阶一致有界,P阶一致最终有界和P阶全局指数稳定性,获得了易于验证的代数判据.
Employing Lyapunov functional and inequalities techniques,P-order uniform boundedness,P-order uniformly ultimate boundedness and P-order global exponential stability for a class of static recurrent neural networks with reaction-diffusion and time-varying delays are studied.The algebraic criterion is obtained for the boundedness and stability,and the models in [5] and [7] are the special cases.
出处
《聊城大学学报(自然科学版)》
2012年第1期1-7,共7页
Journal of Liaocheng University:Natural Science Edition
基金
国家自然科学基金项目(11171374)
山东省自然科学基金重点项目(ZR2011AZ001)资助
关键词
反应扩散
时滞
静态递归神经网络
P阶有界性
P阶全局指数稳定性
reaction-diffusion
delays
static neural networks
P-order uniform boundedness
P-order uniformly ultimate boundedness
P-order global exponential stability