期刊文献+

变时滞Recurrent神经网络同态稳定性 被引量:2

Co-Stability of Recurrent Neural Networks with Variable Delays
在线阅读 下载PDF
导出
摘要 基于线性矩阵不等式,利用Lyapunov泛函的方法,对变时滞Recurrent神经网络同态稳定性进行了研究,给出了不需要调整参数矩阵,易于验证同态稳定性的判据. In the paper,the co-stability of recurrent neural networks with variable delays is discussed by using linear matrix inequality,Lyapunov functional,and the easier criterion of the co-stability is obtained.
出处 《聊城大学学报(自然科学版)》 2010年第4期1-3,共3页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金资助项目(10771199 10871117)
关键词 Recurrent神经网络 变时滞 同态稳定性 LYAPUNOV泛函 线性矩阵不等式 recurrent neural networks variable delays linear matrix inequality Lyapunov functional co-stability
  • 相关文献

参考文献7

二级参考文献23

  • 1王林山.矩阵微分方程的等度有界性(英文)[J].纯粹数学与应用数学,1999,15(3):53-58. 被引量:2
  • 2王占山,张化光,关焕新.多时滞和分布时滞细胞神经网络的全局渐近稳定性[J].东北大学学报(自然科学版),2006,27(12):1307-1310. 被引量:2
  • 3赵永昌,王林山.具有不同时间尺度的变时滞竞争神经网络概周期解的存在性和全局指数收敛性[J].黑龙江大学自然科学学报,2006,23(4):470-473. 被引量:3
  • 4Zhao H. Global asymptotic stability of Hop. eld neural network involving distributed delays[J]. Neural Networks, 2004, 17: 47-53.
  • 5Liang J, Cao J. Global asymptotic stability of bi-directional associative memory networks with distributed delays[J]. Appl Math Comput, 2004, 152: 415-424.
  • 6Zhao H. Global stability of bidirectional associative memory neural networks with distributed delays[J]. Phys Lett A, 2002, 297: 182-190.
  • 7Wang Z, Liu L, Liu X. On global asymptotic stability of neural networks with discrete and distributed delays[J]. Phys Lett A, 2005, 345: 299-308.
  • 8Liao X X, Xiao D M. Global exponential stability of Hopfield neural networks with time-varying delays (in Chinese)[J]. Acta Electronics Sinica, 2000, 28: 88-90.
  • 9Arisk S. Stability analysis of delayed neural networks[J]. IEEE Trans Circ Syst Ⅰ, 2000, 47: 1089-1092.
  • 10Ye H, Michel A N. Robust stability of nonlinear time-delay systems with applications to neural networks[J]. IEEE Trans Circ Syst Ⅰ, 1996, 43: 532-543.

共引文献6

同被引文献17

  • 1王林山,徐道义.可微动力系统的渐近性研究及其在神经网络中的应用[J].聊城大学学报(自然科学版),2004,17(2):12-14. 被引量:2
  • 2陈红军,周建平,王林山.一类时滞静态神经网络模型的全局渐近稳定性[J].聊城大学学报(自然科学版),2006,19(1):19-21. 被引量:2
  • 3Xu Chang-jin,Liao Mao-xin.Existence of Positive Periodic Solutions of a Lotka-Volterra System with Multiple Time Delays[J].Journal of Mathematics Research,2010(2):20-27.
  • 4Chen Shi-hua,Wang Tiao-xiao,Zhang Jun-hua.Positive Periodic Solution for Non-autonomous Competition Lotka-Volterra Patch System with Time Delay[J].Nonlinear Analysis,Real World Applications,2004(5):409-419.
  • 5Li Y.Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays[J].Chaos,Solitons & Fractals,2008(37):288-298.
  • 6Xia Y,Cao J,Chen S.Positive solutions for a Lotka-Volterra mutualism system with several delays[J].Appl Math Model,2007(31):1960-1969.
  • 7Yang X.Global attractivity and positive almost periodic solution of a single secies population model[J].J Math Anal Appl,2007(336):111-126.
  • 8Gaines R E,Mawhin J L.Coincidence degree and nonlinear differential equation[M].New York:Springer-Verlag,1997.
  • 9Li Yong-kun,Zhao Kai-hong.Positive Almost Periodic Solutions of Non-autonomous Delay Competitive Systems with Weak Allee Effect[J].Electronic Journal of Differential Equations,2009(100):1-11.
  • 10Wang L S,Gao Y Y.Global exponential robust stability of reaction-diffusion interval neural networks with time-varying delays[J].Phys Lett A,2006,350:342-348.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部