期刊文献+

工程项目多目标协同优化研究 被引量:5

Study on the project multiple-objectives coordination
在线阅读 下载PDF
导出
摘要 将微粒群算法(particle swarm optimization,PSO)引入工程项目多目标协同优化领域,研究工程项目的质量、费用、资源和工期的协同优化问题。文章首先系统介绍微粒群算法原理、流程以及算法的改进发展,然后研究了工程项目质量、费用、工期和资源的协调功效系数,并建立了质量、费用、工期和资源的多目标协同优化模型,接下来介绍了应用微粒群算法编码解决工程项目多目标优化的方法步骤。最后,通过一个应用实例,计算表明微粒群算法可以准确快速地解决工程项目多目标协同优化问题。 The Particle Swarm Optimization(PSO) is an evolutionary computation,which not only can search solutions randomly and fully,but also is convenient to be carried out.Hence,the article focuses on the application of PSO to the multiple-objective coordination optimization of project,looking forward to seeking best solutions easily and quickly.After introducing the basic theory of the algorithms and its several versions,the article aims at the efficiency coefficient of quality,cost,time and resource subsystem,and set up a multiple optimization coordination model.In the following part,the article introduces how to apply PSO to solve the project coordination optimization problem in detail.The numeric example followed indicates that PSO can solve the multiple-objectives coordination optimization problem of project exactly and quickly.
出处 《中国工程科学》 2010年第3期90-94,99,共6页 Strategic Study of CAE
基金 国家自然科学基金资助项目(70572043)
关键词 微粒群算法 工程项目管理 协同功效系数 多目标协同规划模型 算例 Particle Swarm Optimization(PSO) project management efficiency coefficient of coordination multiple optimization coordination model numeric example
  • 相关文献

参考文献11

二级参考文献61

  • 1邬晓光.桥梁施工网络计划限定资源时优化研究[J].西安公路交通大学学报,1997,17(1):31-34. 被引量:6
  • 2张起森 王首绪.公路施工组织及概预算[M].北京:人民交通出版社,1998..
  • 3[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 4[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 5[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 6[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 7[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 8[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 9[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 10[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.

共引文献947

同被引文献50

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部