期刊文献+

一种改进的非局部平均去噪方法 被引量:33

An Improved Non-Local Means De-noising Approach
在线阅读 下载PDF
导出
摘要 对非局部平均去噪算法提出了以下改进:首先,利用图像中具有对称结构的性质,在相似性邻域的比较中引入邻域的对称变换,更好地利用了图像的自相似性质;其次,提出一种基于图像灰度分布统计特性的滤波参数选取方法,能够根据不同像素的特点自适应地选取滤波参数;此外,利用非局部平均算法能有效地保护图像结构信息的性质,提出一种两级非局部平均去噪方法.对测试图像去噪的实验结果表明,与原始算法相比,提出的改进方法能够在保护图像结构信息的前提下更有效地去除噪声,峰值信噪比最多可以提高5.9dB,去噪效果优于BM-3D方法. Three modifications are proposed for the Non-Local Means(NLM) de-noising algorithm.The symmetric property existing in many images is exploited first,symmetric transformations are introduced in neighborhood comparison so that image self-similarity property can be made better use of;Then an adaptive filtering parameter selection method is proposed based on image intensity statistics;Besides,a two-stage Non-Local Means filtering method is proposed adopting the structure preserving property of NLM algorithm.De-noising results for test images demonstrate that compared with the original algorithm,the modified one can remove noise more efficiently with image structures well preserved,the PSNR can be improved by 5.9dB at most,and the de-noising performance outperforms that of the BM-3D algorithm.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第4期923-928,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.30870666) 国防科技预研基金(No.9140A17020508JW2401)
关键词 非局部平均 对称变换 自适应权值 去噪 non-local means symmetric transform adaptive weighting de-noising
  • 相关文献

参考文献10

  • 1A B~des, B Coil, J M Morel. A review of image denoising algorithms, with a new one[ J]. Multiscale Modeling and Simulation (SIAM Interdisciplanary Journal) ,2005,4(2):490- 530.
  • 2C Tomasi, R Manduchi. Bilateral faltering for gray and color images[ A ]. Proceedings of lntemafional Conference on Computer Vision[ C]. Bombay, India, 1998. 839 - 846.
  • 3蔡超,丁明跃,周成平,张天序.小波域中的双边滤波[J].电子学报,2004,32(1):128-131. 被引量:14
  • 4P Perona, J Malik. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Transactions on PAMI, 1990, 12(5) :629 - 639.
  • 5L Rudin, S Osher, E Fatemi. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992, 60 (2) : 259 - 268.
  • 6R R Coifman, D Donoho. Translafion-invariant de-noising[ J]. In Wavelets and Statistics, Springer-Vedag, New York, 1995, 125- 150.
  • 7K Dabov, A Foi, V Katkovnik, K Egiazarian. Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8) :2080 - 2095.
  • 8T Brox, D Cremers. Iterated nonlocal means for texture restoration[ A ]. In Proc International Conference on Scale Space and Variational Methods in Computer Vision [ C ]. F Sgallari, A Murli,N Paragios,et al. New York: Springer,2007,4485:13 - 24.
  • 9A Buades, B Coil, J M Morel. Nonlocal image and movie denoising[ J]. International Journal of Computer Vision, 2008,76 (2) : 123 - 139.
  • 10刘艳丽,王进,陈曦,郭延文,彭群生.A Robust and Fast Non-Local Means Algorithm for Image Denoising[J].Journal of Computer Science & Technology,2008,23(2):270-279. 被引量:30

二级参考文献31

  • 1[1]Oppenheim A V,Schafer R W.Discrete-time signal processing.Englewood cliffs [M].NJ:Printice-Hall,1989.
  • 2[2]Chan P,Lim J S.One-dimensional processing for adaptive image restoring [J].IEEE Trans.1985,ASSP-33(2):117-126.
  • 3[3]Rank K,Unbehauen R.An adaptive recursive 2-D filter for removal of Gaussian noise in images [J].IEEE Trans.Image Processing,1992,1(7):431-436.
  • 4[4]Simoncelli E P,Anderson E H.Noise removal via Bayesian wavelet coring [A].Proceedings of the 3rd IEEE International Conference on Image Processing [C].Lausanne Switzerland,1996,1:379-382.
  • 5[5]Simoncelli E P.Bayesian denoising of visual images in the wavelet domain [A].Bayesian Inference in Wavelet Based Models [C].Chapter 18,Springer-Verlag,1999.291-308.
  • 6[6]Romberg J K,et al.Shift-invariant denoising using wavelet-domain hidden markov trees [A].Proc.33rd Asilomar Conference [C].Pacific Grove,CA,October 1999.
  • 7[7]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation [J].IEEE Trans.1989,PAMI-11(7):674-693.
  • 8[8]Tomasi C,Manduchi R.Bilateral filtering for gray and color images [A].Proc.of the 1998 IEEE Inter.Conf.on Computer Vision [C].Bombay,India,1998:839-846.
  • 9[9]Mallat S,Hwang W L.Singularity detection and processing with wavelet [J].IEEE Trans.on Information Theory,1992,38(2):617-643.
  • 10Lindenbaum M, Fischer M, Bruckstein A M. On Gabor contribution to image enhancement. Pattern Recognition, 1994, 27(1): 1-8.

共引文献40

同被引文献307

引证文献33

二级引证文献243

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部