期刊文献+

噪声方差未知的小波域中非局部均值图像去噪 被引量:9

Non-local Means Image Denoising in Wavelet Domain with Unknown Noise Variance
在线阅读 下载PDF
导出
摘要 为了有效地去除噪声,获得细节清晰的图像,提出一种噪声参数未知情况下基于小波分析的图像去噪算法.首先对图像上交互选定的不含细节的样本区域进行小波分解,根据噪声方差在不同尺度、不同方向子带内的映像建立噪声的特征向量;利用此特征向量计算小波分解后高频子带内各小波系数之间的相似度,把该相似度作为权值对当前小波系数进行调整.实验结果表明,文中算法对于噪声方差未知的图像不仅能有效地去除噪声,而且能保持图像的边缘信息,获得较好的去噪效果;对实拍的含噪数码照片进行测试的效果理想. In this paper, we propose a non-local means algorithm for image denoising conducted in the wavelet domain with unknown noise variance. Firstly, a sample region containing little texture is selected by the user in the noisy image, then the noise variance is estimated by applying wavelet analysis, and a noise feature vector is constructed to characterize the noise of the entire image at different wavelet bands based on the estimation. For each high frequency sub-band, our proposed algorithm measures the similarity between each pair of wavelet coefficients and adjusts the value of each coefficient based on weighted mean of all the similar wavelet coefficients in the same sub-band. Experimental results demonstrate that our method can reduce noise effectively without blurring image features.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2009年第4期526-532,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60403038 60703084 60723003)
关键词 图像去噪 小波分析 非局部均值 image denoising wavelet analysis non-local means
  • 相关文献

参考文献14

  • 1Lindenbaum M, Fischer M, Bruckstein A. On Gabor's contribution to image enhancement [J]. Pattern Recognition, 1994, 27(1): 1-8
  • 2Perona P, Malik J. Scale-space and edge detection using anisotropie diffusion [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639
  • 3Huang T S, Yang G J, Tang G Y. A fast two-dimensional median filtering algorithm [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1979, 27(1): 13- 18
  • 4Tomasi C, Manduchi R. Bilateral filtering for gray and color images [C]//Proceedings of the 6th International Conference on Computer Vision, Bombay, 1998:839-846
  • 5Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika, 1994, 81(3) : 425-455
  • 6Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising [J]. IEEE Transactions on Image Processing, 1998, 7(1): 82-90
  • 7Jansen M, Bultheel A. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise [J]. IEEE Transactions on Image Processing, 1999, 8 (7): 947-953
  • 8Buades A, Coll B, Morel J M. A non-local algorithm for image denoising [C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, 2005:60-65
  • 9Mahmoudi M, Sapiro G. Fast image and video denoising via nonlocal means of similar neighborhoods[J]. IEEE Signal Processing Letters, 2005, 12(12): 839-842
  • 10Wang J, Guo Y W, Ying Y T, et al. Fast nonqocal algorithm for image denoising [C] //Proceedings of the International Conference on Image Processing, Atlanta, 2006:1429-1432

二级参考文献31

  • 1[1]Oppenheim A V,Schafer R W.Discrete-time signal processing.Englewood cliffs [M].NJ:Printice-Hall,1989.
  • 2[2]Chan P,Lim J S.One-dimensional processing for adaptive image restoring [J].IEEE Trans.1985,ASSP-33(2):117-126.
  • 3[3]Rank K,Unbehauen R.An adaptive recursive 2-D filter for removal of Gaussian noise in images [J].IEEE Trans.Image Processing,1992,1(7):431-436.
  • 4[4]Simoncelli E P,Anderson E H.Noise removal via Bayesian wavelet coring [A].Proceedings of the 3rd IEEE International Conference on Image Processing [C].Lausanne Switzerland,1996,1:379-382.
  • 5[5]Simoncelli E P.Bayesian denoising of visual images in the wavelet domain [A].Bayesian Inference in Wavelet Based Models [C].Chapter 18,Springer-Verlag,1999.291-308.
  • 6[6]Romberg J K,et al.Shift-invariant denoising using wavelet-domain hidden markov trees [A].Proc.33rd Asilomar Conference [C].Pacific Grove,CA,October 1999.
  • 7[7]Mallat S.A theory for multiresolution signal decomposition:The wavelet representation [J].IEEE Trans.1989,PAMI-11(7):674-693.
  • 8[8]Tomasi C,Manduchi R.Bilateral filtering for gray and color images [A].Proc.of the 1998 IEEE Inter.Conf.on Computer Vision [C].Bombay,India,1998:839-846.
  • 9[9]Mallat S,Hwang W L.Singularity detection and processing with wavelet [J].IEEE Trans.on Information Theory,1992,38(2):617-643.
  • 10Lindenbaum M, Fischer M, Bruckstein A M. On Gabor contribution to image enhancement. Pattern Recognition, 1994, 27(1): 1-8.

共引文献40

同被引文献125

引证文献9

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部