期刊文献+

遗传算法优化的SVM模拟电路故障诊断方法 被引量:17

Method for Analog Circuit Fault Diagnosis Based on GA Optimized SVM
在线阅读 下载PDF
导出
摘要 提出了一种利用遗传算法优化的SVM多分类决策树(GADT-SVM)实现模拟电路故障诊断的新方法。介绍了GADT-SVM的设计思想和算法原理;利用传递函数对模拟电路进行建模,并用小波分解提取电路冲激响应的能量分布作为故障特征;使用GADT-SVM对故障特征样本进行分类实现故障诊断。仿真结果表明,与未经优化的DAG-SVM和DT-SVM故障诊断方法相比,该方法可以减小诊断"误差积累"的影响,具有更好的误差控制能力。 A new method for analog circuit fault diagnosis is presented based on genetic algorithm optimized support vector machine multi-class decision tree (GADT-SVM). The design idea and algorithm principle of GADT-SVM is introduced firstly; then model of analog circuit is built by transfer function, and fault characteristic is picked-up by wavelet energy distribution of impulse response. Finally, fault samples are recognized by GADT-SVM. Experiment results show that our method can depress error accumulation phenomena of diagnosis and have stronger error control ability compared with the traditional DAG-SVM and DT-SVM.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第4期553-558,共6页 Journal of University of Electronic Science and Technology of China
基金 部级基础科研项目(A1420061264) 部级预研基金(9140A17030308DZ02)
关键词 模拟电路 故障诊断 遗传算法 支持向量机 analog circuit fault diagnosis genetic algorithm support vector machine
  • 相关文献

参考文献10

  • 1王承,陈光,谢永乐.基于主元分析与神经网络的模拟电路故障诊断[J].电子测量与仪器学报,2005,19(5):14-17. 被引量:22
  • 2HSU C W, LIN C J. A comparison of methods for multi-class support vector machine[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
  • 3PLATT J C, CRISTIANINI N, SHAWE T J. Large margin DAGs for multiclass classification[J]. Advances in Neural Information Processing Systems, 2000, 12(3): 547-553.
  • 4FUMITAKE T, SHIGEO A. Decision tree-based multiclass support vector machines[C]//Proceedings of the 9th International Conference on Neural Information Processing. [S.l.]: [s.n.], 2002: 1418-1422.
  • 5孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 6连可,黄建国,王厚军,龙兵.一种基于遗传算法的SVM决策树多分类策略研究[J].电子学报,2008,36(8):1502-1507. 被引量:35
  • 7SPINA R, UPADHYAYS S. Linear circuit diagnosis using neuromorphic analyzer[J]. IEEE Trans Circuits Syst Ⅱ, 1997, 44: 188-196.
  • 8MALLAT S. A wavelet tour of signal processing[M]. San Diego, CA: Academic, 1999.
  • 9AMINIAN M, AMINIAN F. Neural-network based analog-circuit fault diagosis using wavelet transform as preprocessor[J]. IEEE Transaction on Circuits and Systems, 2000, 47(2): 151-156.
  • 10连可,王厚军,龙兵.基于SVM的模拟电子系统多故障诊断研究[J].仪器仪表学报,2007,28(6):1029-1034. 被引量:20

二级参考文献35

  • 1孟媛媛,刘希玉.一种新的基于二叉树的SVM多类分类方法[J].计算机应用,2005,25(11):2653-2654. 被引量:42
  • 2连可,王厚军,龙兵.基于SVM的模拟电子系统多故障诊断研究[J].仪器仪表学报,2007,28(6):1029-1034. 被引量:20
  • 3焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 4VAPNIK V. The Nature of Statistical Learning [M]. New York:Spring Verlag,1995.
  • 5HSU C-W,LIN C-J. A comparison of methods for multi-class support vector machines[J]. IEEE Transaction on Neural Network, 2002,13(2):415-425.
  • 6PLATT JC,CRISTIANINI N,SHAWE-YAYLOR J. Large Margin DAGs for multiclass classification [A]. Advances in Neural Information Processing Systems [C], 2000. 547-553.
  • 7BEILEY A. Class-dependent features and multicategory classification [D]. navy.mil/csf/papers/baileyphd.pdf,2001.
  • 8HAYKINS 叶世伟 史忠植 译.Neural Networks: A Comprehensive Foundation[M]. 2nd Edition[M].北京:机械工业出版,2004.321-347.
  • 9PLATT JC. Fast Training of Support Vector Machines using Sequential Minimal Optimization[A]. Advances in Kernel Methods: Support Vector Learning[C]. Cambridge:MIT Press,1999. 185-208.
  • 10M. Catelani and A. Fort, "Soft fault detection and isolation in analog circuits:Some results and a comparison between a fuzzy approach and radial basis functionnetworks," IEEE Trans. Instr & Meas, vol. 51, pp. 196-202, April 2002.

共引文献112

同被引文献158

引证文献17

二级引证文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部