期刊文献+

基于HMM-SVM的故障诊断模型及应用 被引量:20

Hybrid HMM and SVM Approach for Fault Diagnosis
在线阅读 下载PDF
导出
摘要 针对直升机减速器故障诊断中机器学习方法存在的问题,根据隐马尔可夫模型(HMM)适合于处理连续动态信号与支持向量机(SVM)适合于模式分类的长处,提出了基于HMM-SVM串联结构的故障诊断模型。通过从减速箱振动信号中有效提取AR特征,利用HMM计算未知信号与减速器各状态的匹配程度,形成特征向量提供给SVM最后判别,实验结果表明该方法优于单纯的HMM或SVM诊断方法,能利用少量训练样本有效地完成直升机减速器的故障诊断。 Because of the problems of machine learning in fault diagnosing of the helicopter's gearbox and the merit of hidden Markov model (HMM) that have the ability to deal with continuous dynamic signals and the merit of support vector machine (SVM)with perfect classifying ability, HMM-SVM based diagnosing method is presented. With the features based on the reflection coefficients of AR model extracted from vibration signals, HMM was used to calculate the matching degree among the unknown signal and the gearbox's states, which formed the features for SVM to diagnosis. The result shows that this proposal method is better than HMM-based and SVM based diagnosing methods in higher diagnostic accuracy with small training samples.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第1期45-48,53,共5页 Chinese Journal of Scientific Instrument
基金 十五部委预研基金资助项目。
关键词 隐马尔可夫模型 支持向量机 故障诊断 减速器 Hidden Markov model Support vector machine Fault diagnosis Gearbox
  • 相关文献

参考文献7

  • 1Lawrance R Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proceedings of the IEEE, 1989, 77(2):257 - 286.
  • 2Atlas L,Ostendorf M,Bernard G D. Hidden Markov models for monitoring machining tool-wear [C].IEEE International Conference on Acoustics,Speech ,and Signal Processing, 2000,6 ; 3887 - 3890.
  • 3Hasan Oeak, Kenneth A loparo. A new bearing fault detection and diagnosis scheme based on hidden Markov modeling of vibration signals [C], IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001,5 : 3141 - 3144.
  • 4Hatzipantelis E, Murray A, Penman J. Comparing hidden Markov models with artificial neural network architectures for condition monitoring applications[C]. Fourth International Conference on Artificial Neural Networks ,Jun. 1995 : 369 - 374.
  • 5VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6Salat R. ,Osowski S.. Accurate fault location in the power transmission line using support vector machine approach[J].IEEE Transactions on Power Systems,2004,19(2):979-986.
  • 7Gao Junfeng , Shi Wengang ,Tan Jianxun . Support vector machines based approach for fault diagnosis of valves in reciprocating pumps [C]. IEEE CCECE 2002 Conference on Electrical and Computer Engineering,Canadian,May 2002,3:1622 - 1627.

共引文献170

同被引文献189

引证文献20

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部