期刊文献+

铁氧体环形电感器寄生电容的提取 被引量:12

Extraction of Parasitic Capacitance for Toroidal Ferrite Core Inductor
在线阅读 下载PDF
导出
摘要 铁氧体电感器在较高频率时可等效为"电阻、电感"的串联支路与一寄生电容的并联,该电容的存在对电感器的高频性能有重要影响。建立铁氧体环形电感器2D平行平面场和3D静电场有限元模型,分别计算任意两线匝之间的杂散电容,由此得到其等效电容网络。若在电感器输入和输出线匝间加一单位电流,基于节点电压方程,则可求解得到电感器的容性集中参数——寄生电容。在假定该寄生电容与频率无关时,利用测试电感器的谐振频率,可得到该寄生电容。计算与实验对比显示,电感器的边缘效应在静电场的模型建立中占据非常重要的地位,即包括线匝杂散电容计算在内的静电场分析必须以3D模型进行。若仅考虑相邻3匝间的杂散电容,则电感器等效寄生电容值可达考虑所有线匝间杂散电容时寄生电容的95%以上,寄生电容与铁氧体磁心和导线绝缘材料的介电常数呈线性关系,且绝缘材料的介电常数对寄生电容的影响更大。 In the higher frequency range, the ferrite core inductor can be considered as an equivalent circuit model, which is formed of a series branch of a resistance and an inductance paralleling a parasitic capacitance, and the capacitance can play an important role in the high performance of the inductor. The models of 2D parallel plane field and 3D electrostatic finite element (FE) for the toroidal ferrite core inductor are presented, and the stray capacitances between every two turns are calculated. Then, the equivalent network of capacitances can be obtained. If a unitary current is applied between the input and output turns of the inductor, the capacitive lumped parameter, i.e., the parasitic capacitance can be calculated using the node-voltage equation method. The stray capacitance can be measured using resonant frequency method on the assumption that the capacitance is independent of frequency. Contrasting calculated results with the measured one, it is shown that the fringe effect of inductor is very crucial to build electrostatic model, i.e., the problems of the electrostatic field must be analyzed using 3D model as well as calculating the stray capacitance of turn to turn for inductor. If only considering the stray capacitance between the adjacent three turns, the value of equivalent parasitic capacitance can reach to above 95% of the total value of which all turns of the coil are considered. The parasitic capacitance has a linear relationship with permittivity of the ferrite magnetic core and the insulating coats of conductor, in which it is more obviously influenced by the insulating coats.
出处 《电工技术学报》 EI CSCD 北大核心 2009年第4期22-29,共8页 Transactions of China Electrotechnical Society
基金 台达电力电子科教发展基金 南京航空航天大学创新基金资助项目
关键词 电感器 有限元法 寄生电容 谐振频率 Inductor, finite element method (FEM), parasitic capacitance, resonant frequency
  • 相关文献

参考文献18

  • 1Philip Fosu Okyere, Ernst Habiger. A novel physically-based PSPICE compatible model for CM chokes[C]. IEEE Proceedings of International Symposium on Electromagnetic Compatibility,1999(18P201): 33-36.
  • 2陈恒林,陈玮,冯利民,钱照明.基于阻抗测量的共模扼流圈高频建模[J].电工技术学报,2007,22(4):8-12. 被引量:34
  • 3Marian K Kazimieczuk, Giuseppe Sancineto, Gabriele Grandi, et al. High-frequency small-signal model of ferrite core inductors[J]. IEEE Trans. on Magnetics, 1999, 35(5): 4185-4191.
  • 4邱扬,鬲莉,田锦,王小军,李晓莉.电感器磁芯材料特性的参数分析法[J].安全与电磁兼容,2002(6):32-34. 被引量:7
  • 5陈荣杰,蒋全兴.直流偏磁下铁氧体磁性材料特性测试方法的研究[J].电子质量,2007(3):6-8. 被引量:2
  • 6Grandi G, Kazimierczk M K, Massarini A, et al. Stray capacitance of single-layer air-core inductors for high-frequency application[C]. Proc. of IEEE Industry Application, 1996, 3: 1384-1388.
  • 7Gabriele Grandi, Marian K Kazimierczuk, Antonio Massarini, et al. Stray capacitances of single-layer solenoid air-core inductors[J]. IEEE Trans. on Industry Application, 1999, 35(5): 1162-1168.
  • 8袁义生.电感器分布电容的建模[J].华东交通大学学报,2006,23(5):90-93. 被引量:11
  • 9Antonio Massarini, Marian K Kazimierczuk Self-capacitance of inductors[J]. IEEE Trans. on Power Electronics, 1997, 12(4): 671-676.
  • 10Bartoli M, Reatti A, Kazimierczuk M K. Modeling iron-power inductors at high frequencys[C]. Conference Record of the 1994 Industry Applications Conference, 29 IAS Anuual Meeting, 1994: 1225-1232.

二级参考文献18

  • 1[3]Fair-Rite Products Corp. Fair- Rite Soft Ferrites.Ferrite Products for The Electronics Industry.
  • 2[4]过壁君.磁芯设计及应用[M].成都:电子科技大学出版社,1989.
  • 3[1]M.J.Prieto and A.Fernandez,Influence of Transformer Parasitics in Low-Power Application[J].IEEE APEC,1999:431-436.
  • 4[2]R.Prieto and J.A.Cobos,Taken into Account all the Parasittc Effects in the Design of Magnetic Componets[J].Ieee Apec,1998:400-406.
  • 5[3]Qin Yu and Thomas W.Holmes,Stray Capacitance Modeling of Inductors by Using the Finite Element Method[J].IEEE EMC,1999:305-310.
  • 6[4]H.Y.Lu and J.G.Zhu,Measurement and Modeling of Stray Capacitances in High Frequency Transformer[J].IEEE PESC,1999:763-768,
  • 7[5]H.Y.Lu and J.G.Zhu,Comparison of Experimental Techniques for Determination of Stray Capacitances in High Frequency Transformers[J].IEEE PESC,2000:320-325,
  • 8[6]A.Massarini and M.K.Kazimierczuk,Self-Capacitance of Inductors[J].IEEE Trans,Power Electron.1999,12(4):671-676.
  • 9Blache F, Keradec J Cogitore B. Stray Capacitances of Two Winding Transformers: Equivallent Circuit,Measurements, Calculation and Lowing [C].Conference Record of the 1994 IEEE Industry Application Society Annual Meeting, Vol.2: 1211-1217.
  • 10Mao Xinkui, Chen Wei. More Precise Model for Parasitic Capacitances in High-frequency Transformer [C]. IEEE Power Electronics Specialists Conference, 2002(2):1054-1057.

共引文献52

同被引文献106

引证文献12

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部