期刊文献+

非自治Lotka-Volterra扩散模型的持续生存与周期轨道(英) 被引量:3

Persistence and Periodic Orbits for Nonautonomous Lotka-Volterra Diffusion Model
在线阅读 下载PDF
导出
摘要 本文研究了一类非自治的捕食者一食饵扩散模型;其中食饵能在环境相异的两个缀块间有限制地扩散,但对捕食者来说,缀块间的扩散不受任何限制;另外假设模型的系数都是时间的函数.我们证明了在适当的条件下,这个系统能够持续生存,进一步给出了系统存在唯一全局渐近稳定正周期轨道的充分条件. A nonautonomous predator-prey diffusion model is investigated in this paper, where the prey can diffuse between two patches of a heterogeneous environment with barriers between patches,but for the predator , the diffusion docs not involve a barrior between patches, further it is assumed that all the parameters are time-dependent.It's shown that the system can be made persistent under some appropriate conditions. Moreover, sufficient conditions that guarantee the existencc of a unque positive orbit which is globally asympototic stable arc derived.
出处 《应用数学》 CSCD 1998年第2期104-108,共5页 Mathematica Applicata
关键词 持续生存 捕食-食饵模型 周期轨道 L-V扩散模型 Predator-prey Diffusion Persistence Periodic orbits Global stability
  • 相关文献

参考文献1

  • 1Lu Zhonghua,Chen Lansun. Global asymptotic stability of the periodic Lotka-Volterra System with two-predators and one-prey[J] 1995,Applied Mathematics(3):267~274

同被引文献14

  • 1陈超,黄振坤.具有无穷时滞反馈控制的两种群竞争系统的持续生存性与周期解[J].商丘师范学院学报,2005,21(2):63-66. 被引量:2
  • 2Takeuchi Y. Duffsion-mediatedpersistence in two patches competition Lotka-Volterra model [J].Math. Biosci. , 1989,95(1):65~83.
  • 3Takeuchi Y. Conflict between the need to forage and the need to avoid comepetition,persistence of two species model[J]. Math. Biosci. , 1990,99(2) :181~194.
  • 4Yang Kuang, Takeuchi Y. Predator-prey dynamics in models of prey dispersal intwo-patches environments[J]. Math. Biosci. , 1994,120(1):77~98.
  • 5Zhang Xingan et al. The dispersal properties of a class of Predator-prey LVmodel[J]. J. Sys. Sci. &Math. Scis. , 1999,19(4) :407-414. (in Chinese)
  • 6Blythe S P et al. Stability swithes in distributed delay models[J]. J. Math. Anal.Appl,1985,109(2):388~396.
  • 7Gopalsamy K. Stability and ossillation in Delay Differential Equations ofPopulation Dynamics [M ].Kluwer Academic Publisher, 1992.
  • 8Ma Zhien. Stability of predation models with time delays[J]. Appl. Anal. ,1986,22(3-4) :169~192.
  • 9Wan Wendi, Ma Zhien. Harmless delays for uniform persistence[J]. J. Math. Anal.Appl. ,1991,158(1):256~268.
  • 10Holling C S. The functional response of predator to prey density and its rate inminicry and population regulation[J]. Men Ent Soc Can. ,1965,45(1):1~60.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部