期刊文献+

EXTINCTION IN A GILPIN-AYALA COMPETITION SYSTEM WITH THE EFFECT OF TOXIC SUBSTANCES

EXTINCTION IN A GILPIN-AYALA COMPETITION SYSTEM WITH THE EFFECT OF TOXIC SUBSTANCES
原文传递
导出
摘要 In this paper,we consider a two dimensional Gilpin-Ayala competition system with the effect of toxic substances.We prove that one of components is driven to extinction while the other one is stable under some conditions.As a result,we generalize the previous results. In this paper,we consider a two dimensional Gilpin-Ayala competition system with the effect of toxic substances.We prove that one of components is driven to extinction while the other one is stable under some conditions.As a result,we generalize the previous results.
作者 Danhong Wang
机构地区 Dept.of Math.
出处 《Annals of Differential Equations》 2015年第1期68-73,共6页 微分方程年刊(英文版)
基金 supported by the Natural Science Foundation of Fujian Province(2014J01008,2012J05007)
关键词 Gilpin-Ayala competition system EXTINCTION toxic substances DELAY Gilpin-Ayala competition system extinction toxic substances delay
  • 相关文献

参考文献15

  • 1王丹红,许君雁,王海娜.一类推广的Gilpin-Ayala竞争系统的绝灭性[J].福州大学学报(自然科学版),2013,41(6):967-971. 被引量:2
  • 2王丹红.具有无穷时滞非线性的n-种群Lotka-Volterra竞争系统的持久性[J].闽江学院学报,2013,34(2):19-21. 被引量:2
  • 3ChenFengde.PERSISTENCE AND PERIODIC ORBITS FOR TWO-SPECIES NON-AUTONOMOUS DIFFUSION LOTKA-VOLTERRA MODELS[J].Applied Mathematics(A Journal of Chinese Universities),2004,19(4):359-366. 被引量:5
  • 4Zhong Li,Fengde Chen.Extinction in two dimensional nonautonomous Lotka–Volterra systems with the effect of toxic substances[J]. Applied Mathematics and Computation . 2006 (1)
  • 5Francisco Montes de Oca,Miguel Vivas.Extinction in a two dimensional Lotka–Volterra system with infinite delay[J]. Nonlinear Analysis: Real World Applications . 2005 (5)
  • 6Fengde Chen.Average conditions for permanence and extinction in nonautonomous Gilpin–Ayala competition model[J]. Nonlinear Analysis: Real World Applications . 2005 (4)
  • 7Jiandong Zhao,Jifa Jiang.Average conditions for permanence and extinction in nonautonomous Lotka–Volterra system[J]. Journal of Mathematical Analysis and Applications . 2004 (2)
  • 8Shair Ahmad,Ivanka M. Stamova.Partial persistence and extinction in N -dimensional competitive systems[J]. Nonlinear Analysis . 2004 (5)
  • 9Jiandong Zhao,Jifa Jiang,Alan C. Lazer.The permanence and global attractivity in a nonautonomous Lotka–Volterra system[J]. Nonlinear Analysis: Real World Applications . 2003 (2)
  • 10Shair Ahmad,Alan C. Lazer.Average conditions for global asymptotic stability in a nonautonomous Lotka—Volterra system[J]. Nonlinear Analysis . 2002 (1)

二级参考文献16

  • 1Ahmad S. On the nonautonomous Volterra-Lotka competition equations [ J ]. Proc Amer Math Soc, 1993,117:199 -204.
  • 2Li Z, Chen F D. Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic subs-tances [ J ]. Comput Appl Math,2009(231 ) :143 -153.
  • 3Teng Z. On the nonautonomous Lotka-Volterra N-species competing systems [ J ]. Appl Math Comput,2000 (114) : 175 - 185.
  • 4Zhao J D, Jiang J F. Permanence in nonautonomous Lotka-Voherra system with predator-prey [ J ]. Appl Math Comput, 2004 (152) :99 - 109.
  • 5Chen F D, Chen Y M, Guo S, et al. Global attrativitity of a generalized Lotka-Voherra competition model[ J ]. Differ Equ Dyn Syst,2010,18(3) :303 -315.
  • 6Chen F D, Li Z, Huang Y J. Note on the permanence of a competitive .system with infinite delay and feedback controls [ J ]. Nonlin- ear Analysis : Real World Applications ,2007 ( 8 ) :680 - 687.
  • 7Fan Meng, Wang Ke. Global periodic solutions of a generalized n - species Gilpin - Ayala competition model [ J ]. Computer and Mathematics with Applications, 2000, 40 (10/11): 1 141 -1 151.
  • 8Goh B S, Agnew T T. Stability in Gilpin and Ayala' s models of competition[J]. Math Biology, 1977, 4(3) : 275 -279.
  • 9周孔容,雷镜朝.Gilpin-Ayala竞争模型全局稳定性分析[J].四川大学学报,1987,24(4):361-366.
  • 10Liao Xiao -xin, Li Jia. Stability in Gilpin -Ayala competition models with diffusion[ J ]. Nonlinear Analysis: Theory, Methods & Applications, 1997, 28(10) : 1 751 -1 758.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部