期刊文献+

重构高阶导数的磨光方法 被引量:1

Reconstruction of High Order Derivatives by New Mollification Methods
在线阅读 下载PDF
导出
摘要 考虑由扰动数据重构原函数的导数问题.基于L-广义解正则化理论,提出了一个新的磨光方法的框架.给出一个具体的求解前3阶导数的算法,其中正则化策略选择了一种改进的TSVD(truncated singular value decomposition)方法(典则TSVD方法).数值结果进一步验证了理论结果及新方法的有效性. The problem of reconstructing numerical derivatives from noisy data is considered. A new framework of mollification methods based on L-generalized solution regularization methods was proposed. A concrete algorithm for the first three derivatives was presented, in which a modification of (called cTSVD ( canonical truncated singular value decomposition) ) is chosen as the needed regularization technique. The numerical examples given verify the theoretical results and show the efficiency of the new method.
机构地区 上海大学理学院
出处 《应用数学和力学》 CSCD 北大核心 2008年第6期696-704,共9页 Applied Mathematics and Mechanics
关键词 不适定问题 数值微分 磨光方法 L-广义解 典则TSVD方法 ill-posed problem numerical differentiation mollification method L-generalized solution method
  • 相关文献

参考文献16

  • 1Gorenflo R, Vessella S. Abel Integral Equations, Analysis and Application, Lecture Notes in Mathematics [ M ]. Berlin: Springer-verlag, 1991.
  • 2Deans S R. Radon Transform and Its Applications [ M]. New York: A Wiley-lnterscience Publication,John Wiley & Sons Inc, 1983.
  • 3Hanke M, Schemer O. Inverse problems light: numerical differentiation[ J]. Amer Math Monthly, 2001,108(6) :512-521.
  • 4Murio D A. The Mollification Method and the Numerical Solution of Ill-Posed Problems [M]. New York:A Wiley-lnterscience Publication,John Wiley & Sons Inc, 1993.
  • 5Murio D A, Mejia C E, Zhan S. Discrete mollification and automatic numerical differentiation[J]. Compute Math Appl, 1998,35(5) : 1-16.
  • 6Heinz W, Hanke M, Neubauer A. Regularization of Inverse Problems [ M]. Dordrecht. Kluwer Academic Publishers, 1996.
  • 7Khan I R, Ohba R. New finite difference formulas for numerical differentiation[ J]. J Compu Appl Math, 2000,126(1/2) : 269-276.
  • 8Wang Y B,Hon Y C, Cheng J. Reconstruction of high order derivatives from input data[ J]. J Inverse Ill-Posed Probl, 2006,14( 1 ) : 205-218.
  • 9Wei T, Li M. High order numerical derivatives for one-dimensional scattered noisy data[J]. Appl Math Comput , 2006,175(2 ) : 1744-1759.
  • 10Manselli P, Miller K. Calculation of the surface temperature and heat flux on one side of a wall from measurements on the opposite side [ J]. Ann Mat Pura Appl, 1980,123 ( 4 ) : 161 - 183.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部