期刊文献+

连续框架下有效数值实现典则TSVD方法

Effectively realizing the canonical TSVD method in the continuous framework
在线阅读 下载PDF
导出
摘要 本文变了一种思路在连续框架下采用二分法结合反迭代法来数值实现典则TSVD方法,就是先用最小二乘法直接求算子A的近似奇异系,转换为求对称正定广义特征值问题,再把对称正定广义特征值问题转化为对称特征值问题,最后求出cTSVD解。在连续框架下,通过数值结果相应得到一些结论,且结果显示在连续框架下有效数值实现典则TSVD方法时计算量小。 In this paper,a thought was changed to adopt the bisection method with inverse iteration to effectively realize canonical TSVD method in the continuous framework.In the continuous framework,firstly a approximate singular system for the operator A was solved,then it was changed to solve symmetric positive generalized eigenvalue problems,then it was changed to solve symmetric eigenvalue problems,lastly the cTSVD solution was solved.Some conclusions were got through the numerical results and the results show that the amount of calculation in the continuous framework is smaller than the amount of calculation in the discrete framework.
作者 刘智
出处 《山东轻工业学院学报(自然科学版)》 CAS 2011年第1期80-84,共5页 Journal of Shandong Polytechnic University
关键词 不适定问题 典则TSVD方法 最小二乘法 ill-posed problems Canonical TSVD method the least squares method.
  • 相关文献

参考文献5

  • 1Lukas M A. Asymptotic Optimality of Generalized Gross-validationfor Choosing the Regularization Parameter[ J] , Numer. Math, 1993(66) :41-66.
  • 2Hansen P C. Regularization GSVD and truncated GSVD [ J ]. BIT,1989(29) 491-504.
  • 3He G Q. A TSVD form for ill-posed equations leading to optimalconvergence rates. ICM 2002, Abstracts of Short Communicationand Poster Sessions [ J ]. Higher Edu. Press,2002 (2) :328.
  • 4刘智,贺国强.典则TSVD方法的有效数值实现[J].上海大学学报(自然科学版),2006,12(1):34-39. 被引量:2
  • 5E.w.切尼,逼近论导引[M].徐献瑜,史应光,李家楷,等,译.上海科学技术出版社,1979.

二级参考文献8

  • 1Engl H W,Hanke M,Neubauer A.Regularization of inverse problems[M].Kluwer Academic Publ Dordrecht,1996.117-140; 154-166.
  • 2Hansen P C.The truncated SVD as a method for regularization[J].BIT,1987,27:534-553.
  • 3He Guoqiang.A TSVD form for ill-posed equations leading to optimal convergence rates[A].ICM 2002,Abstracts of Short Communication and Poster Sessions[C].Higher Edu Press,2002.328.
  • 4Dongarra J,Sorensen D.A fully parallel algorithm for the symmetric eigenproblem[J].SIAM J Sci Comput,1987,8:139-154.
  • 5Bunch JR,Nielsen C P,Sorensen D D.Rank-one modification of the symmetric eigenproblem[J].Numer Math,1978,31:31-48.
  • 6Cuppen J J M.A divide and conquer method for symmetric tridiagonal eigenproblem[J].Numer Math,1981,36:177-195.
  • 7宋国乡 甘小冰 王世儒.数值分析[M].西安:西安电子科技大学出版社,1995.154-155.
  • 8徐树芳 高立 张平文.数值线性代数[M].北京:北京大学出版社,2000.218-224.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部