摘要
考虑一类确定边界流场及边界流场密度的线性Burgers方程反问题。该问题是一个严重不适定问题,即测量数据的微小变化将引起解的急剧变化。利用磨光方法消除高频部分的影响,研究了反问题的条件稳定性,获得了反问题的正则化解及其误差估计。
Consider at inverse problem of linear Burgers equation which boundary flow field and density need to be identified. This is a severely ill - posed problem in the sense that any small change on the input data can result in a dramatically change to the solution. By the mollification method, high - frequency components can be filtered away. The condition stability is discussed. The regularization solution and the error are also obtained.
出处
《江西科学》
2008年第2期175-178,311,共5页
Jiangxi Science
基金
国家自然科学基金资助(10561001)
江西省自然科学基金项目(0511005)
东华理工大学核资源与环境教育部重点实验室(070713)
关键词
BURGERS方程
热传导反问题
磨光方法
条件稳定性
误差估计
Burgers equation, Inverse heat conduction problem, MoUification method, Conditional stability, Error estimate