期刊文献+

非平稳信号的时变自回归建模及其在轴承故障诊断中的应用 被引量:6

Modeling of Nonstationary Signals Based on Time-Varying Autoregression and Its Application in Fault Diagnosis of Bearing
在线阅读 下载PDF
导出
摘要 基于时变自回归(TVAR)方法实现了非平稳随机信号的参数化建模,提出采用最小信息准则确定模型阶数.通过多分量线性调频仿真信号的时变谱估计,表明该方法分辨率高,没有交叉项的干扰,计算速度快.在仿真分析的基础上,应用参数化时频谱和BP神经网络方法进行滚动轴承故障信号的分类和辨识,并基于能量法对时频图进行特征提取.分析结果表明,时变自回归方法的拟合精度高,能有效提取轴承故障信号特征,同时结合神经网络能对故障进行准确诊断. Parametric-modeling of nonstationary signal based on time-varying autoregression (TVAR) was realized. Akaike information criterion, which can choose the order automatically, was expatiated. Time-varying spectrum estimation of multi-ponderance linear frequency modulation signal proves that the TVAR has lots of merits, such as high resolution, without cross term and fast computing speed. The parametric time-varying spectrum and BP neural network method were used to classify and distinguish fault signal of beating.The time-varying spectrum features were extracted by energy means. Results show that the TVAR can extract the characteristic of fault signal, gain high simulation precision and identify fault types exactly.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2008年第5期558-562,共5页 Journal of Tianjin University(Science and Technology)
基金 国家自然科学基金资助项目(50675153) 北京市先进制造技术重点实验室开放项目(10200531)
关键词 时变自回归 非平稳信号 谱估计 神经网络 time-varying autoregression(TVAR) nonstationary signal spectrum estimation neural network
  • 相关文献

参考文献10

  • 1Grenier Y. Time-dependent ARMA modeling of nonstationary signals [ J ]. IEEE Transactions on Signal Processing, 1983,31 ( 4 ) : 899-911.
  • 2李强.非平稳信号特征提取新方法和实用诊断技术的研究[D].天津:天津大学机械工程学院,2003.
  • 3Hall M, Oppenheim A V, Willsky A.Time-varying parametric modeling of speech [ J ] .Proc IEEE Decision and Control, 1997, 16 ( 1 ) : 1085-1091.
  • 4石鸿凌,姜琳峰,孙洪.基于TVAR模型的语音增强技术[J].武汉大学学报(工学版),2004,37(2):49-52. 被引量:4
  • 5Eom K B.Analysis of acoustic signatures from moving vehicles using time-varying autoregressive models [ J ] .Multidimensional Systems and Signal Processing, 1999, 10 ( 4 ) : 357-378.
  • 6王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37(1):97-102. 被引量:19
  • 7陈慧,张龙,熊国良,李嶷.基于TVAR的非平稳工况转子故障诊断技术研究[J].华东交通大学学报,2006,23(5):115-118. 被引量:5
  • 8Sodsri C. Time-Varying Autoregressive Modeling for Nonstationary Acoustic Signal and Its Frequency Analysis [ R ] .The Pennsylvania State University, 2003.
  • 9飞思利技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 10陈长征.基于神经网络的智能诊断[M].北京:冶金工业出版社,2000.

二级参考文献15

  • 1王文华,王宏禹.一种非平稳随机信号模型的时变参数估计算法性能研究[J].大连理工大学学报,1997,37(1):97-102. 被引量:19
  • 2[1]Chukiet Sodsri.Time-varying autoregressive models for nonstationary acoustic signal and its frequency analysis[Doctor Dissertation].Pennsylvania State University.2003.
  • 3[2]KIE B.EOM.Analysis of Acoustic Signatures from Moving Vehicles Using Time-Varying Autoregressive Models[J].Multidimensional Systems and Signal Processing,1999,10:357~378.
  • 4[4]S.Conforto and T.D'Alessio.Spectral analysis for non-stationary signals from mechanical measurements:a parametric approach[J].Mechanical Systems and Signal Processing.1999,13(3):395~411.
  • 5[5]R.Charbonnier and M.Barlaud etc.Results on ar-modelling of nonstationary signals[J].Signal Processing (North-Holland).1987,12:143~151.
  • 6[6]Jebu J.Rajan and Peter J.W.Rayner.Generalized Feature Extraction for Time-Varying Autoregressive Models[J].IEEE.Transactions on signal Processing.1996,44 (10):2498~2507.
  • 7黄建国,现代谱估计.原理与应用(译),1994年
  • 8王宏禹,现代谱估计,1990年
  • 9吴今培,实用时序分析,1989年
  • 10王宏禹,随机数字信号处理,1988年

共引文献25

同被引文献61

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部