期刊文献+

前后向时间序列模型联合估计的时变结构模态参数辨识 被引量:6

Modal parameter identification of time-varying structures using a forward-backward time series model based on joint estimation
在线阅读 下载PDF
导出
摘要 为提高时变结构模态参数辨识精度和抗噪声能力,提出一种前后向泛函向量时变自回归滑动平均(FSVTARMA)时间序列模型联合估计的模态参数辨识方法。首先建立前后向FS-VTARMA模型联合估计的均方误差形式的费用函数,其次引入非平稳信号中前向模型和后向模型估计系数的近似共轭关系,再利用两步最小二乘法(2SLS)得到时变模型系数,最后把时变模型特征方程转换为广义特征值问题提取出模态参数。利用时变刚度系统非平稳振动信号验证该方法,结果表明:能有效地克服前向模型估计中模态参数一步延迟以及起始时刻无法准确获得,以及后向模型估计中模态参数一步超前以及终止时刻无法准确获得的缺点,具有更高的模态参数辨识精度和更强的抗噪声能力。 To improve modal parameter identification precision and anti-noise performance for time-varying structures an identification approach using a forward-backward functional series vector time-dependent ARMA time series model (FS-VTARMA)based on joint estimation was presented.Firstly,a cost function in the form of mean square error for joint forward-backward estimation of FS-VTARMA model was established.Secondly,the estimated parameters of forward and backward models for a non-stationary signal were approximately complex conjugate.Then,the time-varying model coefficients were obtained using the two-stage least square (2SLS)method.Finally,its modal parameters were extracted from a generalized eigenvalue problem transformed from an eigenvalue equation of the time-varying model.The identification approach was validated with non-stationary vibration signals of a system with time-varying stiffness.The results indicated that the proposed method can not only overcome shortages of one-step delay and initial prediction error in the forward model's modal parameter estimation,but also overcome shortages of one-step step lead and terminal prediction error in the backward model's modal parameter estimation,it has higher modal parameter identification precision and better anti-noise performance.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第3期129-135,共7页 Journal of Vibration and Shock
基金 北京理工大学基础研究基金(20120142009)
关键词 时变结构 模态参数辨识 前后向时间序列 向量 泛函 time-varying structures modal parameter identification forward-backward time series vector functional series
  • 相关文献

参考文献15

  • 1庞世伟,于开平,邹经湘.用于时变结构模态参数识别的投影估计递推子空间方法[J].工程力学,2005,22(5):115-119. 被引量:21
  • 2续秀忠,张志谊,华宏星,陈兆能.应用时变参数建模方法辨识时变模态参数[J].航空学报,2003,24(3):230-233. 被引量:29
  • 3Spiridonakos M D, Fassois S D. Non-stationary random vibration modelling and analysis via functional series time- dependent ARMA (FS-TARMA) models-A critical survey [J]. Mechanical Systems and Signal Processing, 2014. (Article in Press).
  • 4Sodsri C. Time-varying autoregressive modelling for nonstationary acoustic signal and its frequency analysis [ D ]. Pennsylvania State University, 2003.
  • 5Ulrych T J, Clayton R W. Time series modeling and maximum entropy[ J]. Phys. Earth. Planet. Inter, 1976, 12 (2 - 3) : 188 - 200.
  • 6芦玉华,王仲生,姜洪开.基于改进时变自回归模型的滚动轴承故障诊断[J].振动与冲击,2011,30(12):74-77. 被引量:5
  • 7Kazlauskas K, Pupeikis R. A forward-backward approach for instantaneous frequency estimation of frequency modulated signals in noisy environment [ J ]. Informatica, 2012, 23 ( 1 ) : 65 - 76.
  • 8Spiridonakos M D, Fassois S D. Parametric identification of a time-varying structure based on vector vibration response measurements [ J ]. Mechanical Systems and Signal Processing,2009, 23 (6) : 2029 - 2048.
  • 9Marple S L. Digitalspectral analysis with applicaion [ M ]. New York : Prentice-Hall PTR, 1987.
  • 10Kamen E. The poles and zeros of a linear time-varying system [ J]. Linear Algebra and its applications, 1988, 98 (1) : 263 - 289.

二级参考文献32

  • 1张龙,熊国良,柳和生,邹慧君,陈慧.时变参数模型及其在非平稳振动分析中的应用[J].振动与冲击,2006,25(6):49-53. 被引量:9
  • 2王胜春,韩捷,李志农,李剑峰.基于TVAR的自适应时频分析及在故障诊断中的应用[J].轴承,2007(6):28-31. 被引量:3
  • 3Sodsri C. Time-varying autoregressive modeling for nonstationary acoustic signal and its frequency[D].Pennsylvania State University,2003.
  • 4Zou R, Wang H L, Chou K H. A robust time-varying identification algorithm using basis functions [J].Annals of Biomedical Engineering, 2003, 31:840-853.
  • 5Hall M G, Oppenhein A V, Willsky A S. Time-varying parametric modeling of speech[J].Signal Processing, 1983, 5(3): 267-285.
  • 6Cho Y S, Kim S B, Powers E J. Time-varying spectral estimation using AR models with variable forgetting factors[J].IEEE Transactions on Signal Processing,1991,39(6):1422-1426.
  • 7Cooper J E. Identification of the time varying modal parameters[J]. Aeronautical Journal, 1990, 10:271 - 278.
  • 8Qian S, Chen D. Joint time-frequency analysis: methods and applications[M]. Englewood Cliffs NJ : Prentice-Hall, 1996.45 - 73.
  • 9Kay S M, Marple S L. Spectrum analysis-A modern perspective[J]. Proc IEEE,1981, 69 (11) : 1380- 1419.
  • 10Ljung L. Recursive identification: theory for users[M]. Englewood Cliffs, NJ: Prentice-Hall, 1987. 75-98.

共引文献48

同被引文献80

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部